Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
from fastapi import FastAPI
|
3 |
from pydantic import BaseModel
|
@@ -5,17 +7,16 @@ from threading import Thread
|
|
5 |
import uvicorn
|
6 |
|
7 |
# Initialize FastAPI
|
8 |
-
|
9 |
app = FastAPI()
|
10 |
|
11 |
# Load the tokenizer and model
|
12 |
-
|
13 |
-
model =
|
14 |
|
15 |
# Define the function to generate text for Gradio
|
16 |
def generate_text(input_text):
|
17 |
input_text = "Extract lots from given text.\n" + input_text
|
18 |
-
inputs = tokenizer.encode(input_text, return_tensors="pt")
|
19 |
outputs = model.generate(inputs, max_new_tokens=1024)
|
20 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
21 |
return result
|
@@ -30,10 +31,6 @@ iface = gr.Interface(
|
|
30 |
)
|
31 |
|
32 |
# Define a request body model for FastAPI
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
class TextInput(BaseModel):
|
38 |
input_text: str
|
39 |
|
@@ -41,12 +38,9 @@ class TextInput(BaseModel):
|
|
41 |
@app.post("/generate")
|
42 |
async def generate_text_api(input_data: TextInput):
|
43 |
input_text = input_data.input_text
|
44 |
-
inputs = tokenizer.encode(input_text, return_tensors="pt")
|
45 |
-
|
46 |
-
|
47 |
outputs = model.generate(inputs, max_new_tokens=1024)
|
48 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
49 |
-
|
50 |
return {"output": result}
|
51 |
|
52 |
# Health check endpoint
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
3 |
import torch
|
4 |
from fastapi import FastAPI
|
5 |
from pydantic import BaseModel
|
|
|
7 |
import uvicorn
|
8 |
|
9 |
# Initialize FastAPI
|
|
|
10 |
app = FastAPI()
|
11 |
|
12 |
# Load the tokenizer and model
|
13 |
+
tokenizer = T5Tokenizer.from_pretrained("alpeshsonar/lot-t5-small-filter", legacy=False)
|
14 |
+
model = T5ForConditionalGeneration.from_pretrained("alpeshsonar/lot-t5-small-filter")
|
15 |
|
16 |
# Define the function to generate text for Gradio
|
17 |
def generate_text(input_text):
|
18 |
input_text = "Extract lots from given text.\n" + input_text
|
19 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt")
|
20 |
outputs = model.generate(inputs, max_new_tokens=1024)
|
21 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
22 |
return result
|
|
|
31 |
)
|
32 |
|
33 |
# Define a request body model for FastAPI
|
|
|
|
|
|
|
|
|
34 |
class TextInput(BaseModel):
|
35 |
input_text: str
|
36 |
|
|
|
38 |
@app.post("/generate")
|
39 |
async def generate_text_api(input_data: TextInput):
|
40 |
input_text = input_data.input_text
|
41 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt")
|
|
|
|
|
42 |
outputs = model.generate(inputs, max_new_tokens=1024)
|
43 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
44 |
return {"output": result}
|
45 |
|
46 |
# Health check endpoint
|