Spaces:
Running
Running
File size: 16,968 Bytes
291b9f4 e13455c 1a102e1 e13455c dc43c61 bbf7597 c883d77 18e733f bbf7597 3152c36 bbf7597 39bd3a6 bbf7597 998e0cb 8faa556 18e733f 9eec0ff 93bc4c5 9eec0ff 8faa556 9c01213 8faa556 9c01213 8faa556 e13455c 5b25c6e e13455c e1967ee e13455c dc43c61 642181a 886c1e1 642181a 886c1e1 642181a c883d77 886c1e1 642181a 886c1e1 b4cb1c3 886c1e1 08e69e9 46710a4 886c1e1 c883d77 46710a4 c883d77 08e69e9 8b248fd 973f1e3 08e69e9 886c1e1 642181a c883d77 886c1e1 642181a e13455c 3efcc0b e13455c 642181a 706b71b 642181a 886c1e1 6c6cd07 642181a e13455c a1b9bc0 ee4841d a1b9bc0 2fab7e7 a1b9bc0 04f4397 a1b9bc0 cb75233 a1b9bc0 cb75233 a1b9bc0 ee4841d a1b9bc0 b80ec6f a1b9bc0 2756870 bd4c0d2 034df1b a1b9bc0 bd4c0d2 a1b9bc0 9eec0ff a1b9bc0 bb9ed6b a1b9bc0 ab6e218 9c01213 95641f9 9c01213 3dddc6f 9c01213 3dddc6f 9c01213 3dddc6f 9c01213 bbf7597 998e0cb bbf7597 a1b9bc0 bbf7597 c114093 bbf7597 c114093 bbf7597 8faa556 bbbeb15 8faa556 9c01213 bbbeb15 9c01213 5e0a3f7 19a4c6d 9c01213 95641f9 bbf7597 5da4449 f013965 9c01213 5da4449 19a4c6d bbf7597 9dae67d 19a4c6d 9dae67d bbf7597 e89a3bf bbf7597 dc43c61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
from fastapi import FastAPI, File, UploadFile, HTTPException, Depends, Header
from pydantic import BaseModel
import os
from pymongo import MongoClient
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
import uvicorn
from dotenv import load_dotenv
from fastapi.middleware.cors import CORSMiddleware
from uuid import uuid4
# import httpx
from tensorflow import keras
from tensorflow.keras.models import load_model
import joblib
import librosa
import numpy as np
import pandas as pd
import numpy as np
import librosa.display
import soundfile as sf
import opensmile
import ffmpeg
import noisereduce as nr
import json
# Path to the JSON file
json_filepath = 'app/reciters.json'
def load_json_data(filepath):
"""Load JSON data from a file."""
with open(filepath, 'r', encoding='utf-8') as file:
return json.load(file)
# Load the JSON data from file
json_reciters = load_json_data(json_filepath)
def find_reciter_by_name(name):
"""Search for a reciter by name in the loaded JSON data."""
for reciter in json_reciters['reciters']:
if reciter['name'] == name:
return reciter
return None # Return None if no match is found
default_sample_rate=22050
def load(file_name, skip_seconds=0):
return librosa.load(file_name, sr=None, res_type='kaiser_fast')
# def preprocess_audio(audio_data, rate):
# # Apply preprocessing steps
# audio_data = nr.reduce_noise(y=audio_data, sr=rate)
# audio_data = librosa.util.normalize(audio_data)
# audio_data, _ = librosa.effects.trim(audio_data)
# audio_data = librosa.resample(audio_data, orig_sr=rate, target_sr=default_sample_rate)
# # audio_data = fix_length(audio_data)
# rate = default_sample_rate
# return audio_data, rate
def extract_features(X, sample_rate):
# Generate Mel-frequency cepstral coefficients (MFCCs) from a time series
mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=40).T,axis=0)
# Generates a Short-time Fourier transform (STFT) to use in the chroma_stft
stft = np.abs(librosa.stft(X))
# Computes a chromagram from a waveform or power spectrogram.
chroma = np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T,axis=0)
# Computes a mel-scaled spectrogram.
mel = np.mean(librosa.feature.melspectrogram(y=X, sr=sample_rate).T,axis=0)
# Computes spectral contrast
contrast = np.mean(librosa.feature.spectral_contrast(S=stft, sr=sample_rate).T,axis=0)
# Computes the tonal centroid features (tonnetz)
tonnetz = np.mean(librosa.feature.tonnetz(y=librosa.effects.harmonic(X),sr=sample_rate).T,axis=0)
# Concatenate all feature arrays into a single 1D array
combined_features = np.hstack([mfccs, chroma, mel, contrast, tonnetz])
return combined_features
load_dotenv()
# MongoDB connection
MONGODB_ATLAS_CLUSTER_URI = os.getenv("MONGODB_ATLAS_CLUSTER_URI", None)
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
DB_NAME = "quran_db"
COLLECTION_NAME = "tafsir"
ATLAS_VECTOR_SEARCH_INDEX_NAME = "langchain_index"
MONGODB_COLLECTION = client[DB_NAME][COLLECTION_NAME]
embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-m3")
vector_search = MongoDBAtlasVectorSearch.from_connection_string(
MONGODB_ATLAS_CLUSTER_URI,
DB_NAME + "." + COLLECTION_NAME,
embeddings,
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
)
df = pd.read_csv('app/quran.csv')
# FastAPI application setup
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def index_file(filepath):
""" Index each block in a file separated by double newlines for quick search.
Returns a dictionary with key as content and value as block number. """
index = {}
with open(filepath, 'r', encoding='utf-8') as file:
content = file.read() # Read the whole file at once
blocks = content.split("\n\n") # Split the content by double newlines
for block_number, block in enumerate(blocks, 1): # Starting block numbers at 1 for human readability
# Replace single newlines within blocks with space and strip leading/trailing whitespace
formatted_block = ' '.join(block.split('\n')).strip()
index[formatted_block] = block_number
# if(block_number == 100):
# print(formatted_block) # Print the 5th block
return index
def get_text_by_block_number(filepath, block_numbers):
""" Retrieve specific blocks from a file based on block numbers, where each block is separated by '\n\n'. """
blocks_text = []
with open(filepath, 'r', encoding='utf-8') as file:
content = file.read() # Read the whole file at once
blocks = content.split("\n\n\n") # Split the content by double newlines
for block_number, block in enumerate(blocks, 1): # Starting block numbers at 1 for human readability
if block_number in block_numbers:
splitted = block.split('\n')
ayah = splitted[0]
tafsir = splitted[1]
print(block_number-1)
print(df.iloc[block_number - 1])
# Replace single newlines within blocks with space and strip leading/trailing whitespace
# ayah_info = await get_ayah_info(ayah) # This makes the API call
row_data = df.iloc[block_number - 1].to_dict()
blocks_text.append({
"tafsir": tafsir,
"surah_no": row_data['surah_no'],
"surah_name_en": row_data['surah_name_en'],
"surah_name_ar": row_data['surah_name_ar'],
"surah_name_roman": row_data['surah_name_roman'],
"ayah_no_surah": row_data['ayah_no_surah'],
"ayah_no_quran": row_data['ayah_no_quran'],
"ayah_ar": row_data['ayah_ar'],
"ayah_en": row_data['ayah_en']
})
if len(blocks_text) == len(block_numbers): # Stop reading once all required blocks are retrieved
break
return blocks_text
# Existing API endpoints
@app.get("/")
async def read_root():
return {"message": "Welcome to our app"}
# New Query model for the POST request body
class Item(BaseModel):
question: str
EXPECTED_TOKEN = os.getenv("API_TOKEN")
def verify_token(authorization: str = Header(None)):
"""
Dependency to verify the Authorization header contains the correct Bearer token.
"""
# Prefix for bearer token in the Authorization header
prefix = "Bearer "
# Check if the Authorization header is present and correctly formatted
if not authorization or not authorization.startswith(prefix):
raise HTTPException(status_code=401, detail="Unauthorized: Missing or invalid token")
# Extract the token from the Authorization header
token = authorization[len(prefix):]
# Compare the extracted token to the expected token value
if token != EXPECTED_TOKEN:
raise HTTPException(status_code=401, detail="Unauthorized: Incorrect token")
# New API endpoint to get an answer using the chain
@app.post("/get_answer")
async def get_answer(item: Item):
try:
# Perform the similarity search with the provided question
matching_docs = vector_search.similarity_search(item.question, k=3)
clean_answers = [doc.page_content.replace("\n", " ").strip() for doc in matching_docs]
# Assuming 'search_file.txt' is where we want to search answers
answers_index = index_file('app/quran_tafseer_formatted.txt')
# Collect line numbers based on answers found
line_numbers = [answers_index[answer] for answer in clean_answers if answer in answers_index]
# Assuming 'retrieve_file.txt' is where we retrieve lines based on line numbers
result_text = get_text_by_block_number('app/quran_tafseer.txt', line_numbers)
print(result_text)
return {"result_text": result_text}
except Exception as e:
# If there's an error, return a 500 error with the error's details
raise HTTPException(status_code=500, detail=str(e))
# ------- CNN
# Constants
TARGET_DURATION = 3 # seconds for each audio clip
SAMPLE_RATE = 44100 # sample rate to use
N_MELS = 128 # number of Mel bands to generate
HOP_LENGTH = 512 # number of samples between successive frames
def preprocess_audio_cnn(file_path):
try:
# Load the audio file
audio, sr = librosa.load(file_path, sr=SAMPLE_RATE)
audio_length = len(audio)/SAMPLE_RATE
except FileNotFoundError:
print(f"Error: File '{file_path}' not found.")
return None
except Exception as e:
print(f"Error loading audio file: {e}")
return None
# Check if audio signal is None
if audio is None:
print(f"Error: Audio signal is None for file '{file_path}'.")
return None
audio, _ = librosa.effects.trim(audio, top_db = 25)
audio = nr.reduce_noise(y = audio, sr=SAMPLE_RATE, thresh_n_mult_nonstationary=1,stationary=False)
# Determine how many 20-second clips can be made from the audio
if audio_length < TARGET_DURATION:
# If audio is shorter than 20 seconds, pad it
pad_length = int((TARGET_DURATION - audio_length) * sr)
padded_audio = np.pad(audio, (0, pad_length), mode='constant')
return [padded_audio] # Return as a list for consistent output format
else:
# If audio is longer than or equal to 20 seconds, split it into 20-second clips
clip_length = TARGET_DURATION * sr
clips = []
for start in range(0, len(audio), clip_length):
end = start + clip_length
# Ensure the last clip has enough samples
if end > len(audio):
# Here you can choose to pad the last clip or simply not use it if it's too short
last_clip = np.pad(audio[start:], (0, end - len(audio)), mode='constant')
clips.append(last_clip)
else:
clips.append(audio[start:end])
return clips
def generate_spectrogram(audio):
# Generate a Mel-scaled spectrogram
S = librosa.feature.melspectrogram(y=audio, sr=SAMPLE_RATE, n_mels=N_MELS, hop_length=HOP_LENGTH)
S_dB = librosa.power_to_db(S, ref=np.max)
# Normalize the spectrogram to be between 0 and 1
S_dB_norm = librosa.util.normalize(S_dB)
return S_dB_norm
cnn_model = load_model('app/apr23.h5')
cnn_label_encoder = joblib.load('app/apr23_label.pkl')
@app.post("/cnn")
async def handle_cnn(file: UploadFile = File(...)):
try:
print("got into request")
print(file.content_type)
# Ensure that we are handling an MP3 file
if file.content_type in ["audio/mpeg", "audio/mp3", "application/octet-stream"]:
file_extension = ".mp3"
elif file.content_type == "audio/wav":
file_extension = ".wav"
else:
raise HTTPException(status_code=400, detail="Invalid file type. Supported types: MP3, WAV.")
# Read the file's content
contents = await file.read()
temp_filename = f"app/{uuid4().hex}{file_extension}"
# Save file to a temporary file if needed or process directly from memory
with open(temp_filename, "wb") as f:
f.write(contents)
print(f"File saved as {temp_filename}")
spectrograms = []
clips = preprocess_audio_cnn(temp_filename)
for clip in clips:
spectrogram = generate_spectrogram(clip)
if np.isnan(spectrogram).any() or np.isinf(spectrogram).any():
print("Invalid spectrogram detected")
continue
spectrograms.append(spectrogram)
X = np.array(spectrograms)
X = X[..., np.newaxis]
# Make predictions
predictions = cnn_model.predict(X)
print('predictions', predictions)
# Convert predictions to label indexes
predicted_label_indexes = np.argmax(predictions, axis=1)
print(predicted_label_indexes)
unique_labels, counts = np.unique(predicted_label_indexes, return_counts=True)
# Step 2: Find the index of the maximum count
index_of_max_freq = np.argmax(counts)
# Step 3: Retrieve the most frequent item (index)
most_frequent_label_index = unique_labels[index_of_max_freq]
# predicted_label_indexes = np.argmax(predicted_label_indexes)
# Convert label indexes to actual label names
predicted_labels = cnn_label_encoder.inverse_transform([most_frequent_label_index])
print('decoded', predicted_labels)
reciter_name = predicted_labels[0]
# Find the reciter by name
reciter_object = find_reciter_by_name(reciter_name)
# Clean up the temporary file
os.remove(temp_filename)
# Return a successful response with decoded predictions
return reciter_object
except Exception as e:
print(e)
# Handle possible exceptions
raise HTTPException(status_code=500, detail=str(e))
# random forest
model = joblib.load('app/1713661391.0946255_trained_model.joblib')
pca = joblib.load('app/pca.pkl')
scaler = joblib.load('app/1713661464.8205004_scaler.joblib')
label_encoder = joblib.load('app/1713661470.6730225_label_encoder.joblib')
def preprocess_audio(audio_data, rate):
audio_data = nr.reduce_noise(y=audio_data, sr=rate)
# remove silence
# intervals = librosa.effects.split(audio_data, top_db=20)
# # Concatenate non-silent intervals
# audio_data = np.concatenate([audio_data[start:end] for start, end in intervals])
audio_data = librosa.util.normalize(audio_data)
audio_data, _ = librosa.effects.trim(audio_data)
audio_data = librosa.resample(audio_data, orig_sr=rate, target_sr=default_sample_rate)
rate = default_sample_rate
return audio_data, rate
def repair_mp3_with_ffmpeg_python(input_path, output_path):
"""Attempt to repair an MP3 file using FFmpeg."""
try:
# Define the audio stream with the necessary conversion parameters
audio = (
ffmpeg
.input(input_path, nostdin=None, y=None)
.output(output_path, vn=None, acodec='libmp3lame', ar='44100', ac='1', b='192k', af='aresample=44100')
.global_args('-nostdin', '-y') # Applying global arguments
.overwrite_output()
)
# Execute the FFmpeg command
ffmpeg.run(audio)
print(f"File repaired and saved as {output_path}")
except ffmpeg.Error as e:
print(f"Failed to repair file {input_path}: {str(e.stderr)}")
@app.post("/rf")
async def handle_audio(file: UploadFile = File(...)):
try:
# Ensure that we are handling an MP3 file
if file.content_type == "audio/mpeg" or file.content_type == "audio/mp3":
file_extension = ".mp3"
elif file.content_type == "audio/wav":
file_extension = ".wav"
else:
raise HTTPException(status_code=400, detail="Invalid file type. Supported types: MP3, WAV.")
# Read the file's content
contents = await file.read()
temp_filename = f"app/{uuid4().hex}{file_extension}"
# Save file to a temporary file if needed or process directly from memory
with open(temp_filename, "wb") as f:
f.write(contents)
audio_data, sr = load(temp_filename, skip_seconds=5)
print("finished loading ", temp_filename)
# Preprocess data
audio_data, sr = preprocess_audio(audio_data, sr)
print("finished processing ", temp_filename)
# Extract features
features = extract_features(audio_data, sr)
features = features.reshape(1, -1)
features = scaler.transform(features)
# proceed with an inference
results = model.predict(features)
# decoded_predictions = [label_encoder.classes_[i] for i in results]
# Decode the predictions using the label encoder
decoded_predictions = label_encoder.inverse_transform(results)
print('decoded', decoded_predictions[0])
# Clean up the temporary file
os.remove(temp_filename)
print({"message": "File processed successfully", "sheikh": decoded_predictions[0]})
# Return a successful response with decoded predictions
return {"message": "File processed successfully", "sheikh": decoded_predictions[0]}
except Exception as e:
print(e)
# Handle possible exceptions
raise HTTPException(status_code=500, detail=str(e))
# if __name__ == "__main__":
# uvicorn.run("main:app", host="0.0.0.0", port=8080, reload=False)
|