deveix commited on
Commit
95641f9
·
1 Parent(s): 675cfa2
Files changed (1) hide show
  1. app/main.py +9 -9
app/main.py CHANGED
@@ -183,10 +183,10 @@ async def get_answer(item: Item, token: str = Depends(verify_token)):
183
  raise HTTPException(status_code=500, detail=str(e))
184
 
185
  # naive bayes
186
- nb_model = joblib.load('app/1713630229.4965415_trained_model.joblib')
187
- nb_pca = joblib.load('app/pca.pkl')
188
- nb_scaler = joblib.load('app/scaler.pkl')
189
- nb_label_encoder = joblib.load('app/label_encoder.pkl')
190
 
191
  # def preprocess_audio(path, save_dir):
192
  # y, sr = librosa.load(path)
@@ -333,16 +333,16 @@ async def handle_audio(file: UploadFile = File(...)):
333
  # features = extract_features(temp_filename)
334
  print("Extracted Features:", features)
335
 
336
- # features = nb_scaler.transform(features)
337
- # features = nb_pca.transform(features)
338
  features = np.array(features).reshape(1, -1)
339
 
340
  # proceed with an inference
341
- results = nb_model.predict(features)
342
- # decoded_predictions = [nb_label_encoder.classes_[i] for i in results]
343
 
344
  # # Decode the predictions using the label encoder
345
- # decoded_predictions = nb_label_encoder.inverse_transform(results)
346
  # .tolist()
347
  # Clean up the temporary file
348
  os.remove(temp_filename)
 
183
  raise HTTPException(status_code=500, detail=str(e))
184
 
185
  # naive bayes
186
+ model = joblib.load('app/1713630229.4965415_trained_model.joblib')
187
+ pca = joblib.load('app/pca.pkl')
188
+ scaler = joblib.load('app/scaler.pkl')
189
+ label_encoder = joblib.load('app/label_encoder.pkl')
190
 
191
  # def preprocess_audio(path, save_dir):
192
  # y, sr = librosa.load(path)
 
333
  # features = extract_features(temp_filename)
334
  print("Extracted Features:", features)
335
 
336
+ # features = scaler.transform(features)
337
+ # features = pca.transform(features)
338
  features = np.array(features).reshape(1, -1)
339
 
340
  # proceed with an inference
341
+ results = model.predict(features)
342
+ # decoded_predictions = [label_encoder.classes_[i] for i in results]
343
 
344
  # # Decode the predictions using the label encoder
345
+ # decoded_predictions = label_encoder.inverse_transform(results)
346
  # .tolist()
347
  # Clean up the temporary file
348
  os.remove(temp_filename)