Spaces:
Running
Running
deveix
commited on
Commit
·
3dddc6f
1
Parent(s):
491a059
change models
Browse files- app/main.py +57 -40
app/main.py
CHANGED
@@ -182,66 +182,83 @@ async def get_answer(item: Item, token: str = Depends(verify_token)):
|
|
182 |
raise HTTPException(status_code=500, detail=str(e))
|
183 |
|
184 |
# random forest
|
185 |
-
model = joblib.load('app/
|
186 |
pca = joblib.load('app/pca.pkl')
|
187 |
-
scaler = joblib.load('app/
|
188 |
-
label_encoder = joblib.load('app/
|
189 |
|
190 |
def preprocess_audio(audio_data, rate):
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
# audio_data = np.concatenate([audio_data[start:end] for start, end in intervals])
|
196 |
|
197 |
-
|
198 |
audio_data, _ = librosa.effects.trim(audio_data)
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
#
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
-
|
209 |
-
# y_denoised = librosa.effects.preemphasis(y_trimmed)
|
210 |
|
211 |
-
# # Apply dynamic range compression
|
212 |
-
# y_compressed = librosa.effects.preemphasis(y_denoised)
|
213 |
|
214 |
-
# # Augmentation (example of time stretching)
|
215 |
-
# # y_stretched = librosa.effects.time_stretch(y_compressed, rate=1.2)
|
216 |
|
217 |
-
# # Silence Removal
|
218 |
-
# y_silence_removed, _ = librosa.effects.trim(y_compressed)
|
219 |
|
220 |
-
# # Equalization (example: apply high-pass filter)
|
221 |
-
# y_equalized = librosa.effects.preemphasis(y_silence_removed)
|
222 |
|
223 |
-
# # Define target sample rate
|
224 |
-
# target_sr = sr
|
225 |
|
226 |
-
# # Data Augmentation (example: pitch shifting)
|
227 |
-
# y_pitch_shifted = librosa.effects.pitch_shift(y_normalized, sr=target_sr, n_steps=2)
|
228 |
|
229 |
|
230 |
-
|
231 |
|
232 |
|
233 |
-
|
234 |
-
|
235 |
|
236 |
-
|
237 |
-
# mfccs = librosa.feature.mfcc(y=y_normalized, sr=target_sr, n_mfcc=20)
|
238 |
|
239 |
-
|
240 |
|
241 |
-
|
242 |
-
|
243 |
|
244 |
-
|
245 |
|
246 |
# smile = opensmile.Smile(
|
247 |
# feature_set=opensmile.FeatureSet.ComParE_2016,
|
|
|
182 |
raise HTTPException(status_code=500, detail=str(e))
|
183 |
|
184 |
# random forest
|
185 |
+
model = joblib.load('app/1713696933.326759_trained_model.joblib')
|
186 |
pca = joblib.load('app/pca.pkl')
|
187 |
+
scaler = joblib.load('app/1713696947.894978_scaler.joblib')
|
188 |
+
label_encoder = joblib.load('app/1713696954.9487948_label_encoder.joblib')
|
189 |
|
190 |
def preprocess_audio(audio_data, rate):
|
191 |
+
# Resample first if the target rate is lower to reduce data size for subsequent operations
|
192 |
+
if rate > default_sample_rate:
|
193 |
+
audio_data = librosa.resample(audio_data, orig_sr=rate, target_sr=default_sample_rate)
|
194 |
+
rate = default_sample_rate
|
|
|
195 |
|
196 |
+
# Trim silence before applying computationally expensive noise reduction
|
197 |
audio_data, _ = librosa.effects.trim(audio_data)
|
198 |
+
|
199 |
+
# Normalize the audio data
|
200 |
+
audio_data = librosa.util.normalize(audio_data)
|
201 |
+
|
202 |
+
# Apply noise reduction
|
203 |
+
audio_data = nr.reduce_noise(y=audio_data, sr=rate)
|
204 |
+
|
205 |
+
return audio_data, rate
|
206 |
+
|
207 |
+
# def preprocess_audio(audio_data, rate):
|
208 |
+
# audio_data = nr.reduce_noise(y=audio_data, sr=rate)
|
209 |
+
# # remove silence
|
210 |
+
# # intervals = librosa.effects.split(audio_data, top_db=20)
|
211 |
+
# # # Concatenate non-silent intervals
|
212 |
+
# # audio_data = np.concatenate([audio_data[start:end] for start, end in intervals])
|
213 |
+
|
214 |
+
# audio_data = librosa.util.normalize(audio_data)
|
215 |
+
# audio_data, _ = librosa.effects.trim(audio_data)
|
216 |
+
# audio_data = librosa.resample(audio_data, orig_sr=rate, target_sr=default_sample_rate)
|
217 |
+
# rate = default_sample_rate
|
218 |
+
|
219 |
+
# # y_trimmed, _ = librosa.effects.trim(y_no_gaps, top_db = 20)
|
220 |
+
# # D = librosa.stft(y)
|
221 |
+
# # S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
|
222 |
+
# # S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128*2,)
|
223 |
+
# # S_db_mel = librosa.amplitude_to_db(np.abs(S), ref=np.max)
|
224 |
|
225 |
+
# # Apply noise reduction (example using spectral subtraction)
|
226 |
+
# # y_denoised = librosa.effects.preemphasis(y_trimmed)
|
227 |
|
228 |
+
# # # Apply dynamic range compression
|
229 |
+
# # y_compressed = librosa.effects.preemphasis(y_denoised)
|
230 |
|
231 |
+
# # # Augmentation (example of time stretching)
|
232 |
+
# # # y_stretched = librosa.effects.time_stretch(y_compressed, rate=1.2)
|
233 |
|
234 |
+
# # # Silence Removal
|
235 |
+
# # y_silence_removed, _ = librosa.effects.trim(y_compressed)
|
236 |
|
237 |
+
# # # Equalization (example: apply high-pass filter)
|
238 |
+
# # y_equalized = librosa.effects.preemphasis(y_silence_removed)
|
239 |
|
240 |
+
# # # Define target sample rate
|
241 |
+
# # target_sr = sr
|
242 |
|
243 |
+
# # # Data Augmentation (example: pitch shifting)
|
244 |
+
# # y_pitch_shifted = librosa.effects.pitch_shift(y_normalized, sr=target_sr, n_steps=2)
|
245 |
|
246 |
|
247 |
+
# # Split audio into non-silent intervals
|
248 |
|
249 |
|
250 |
+
# # Normalize the audio signal
|
251 |
+
# # y_normalized = librosa.util.normalize(y_equalized)
|
252 |
|
253 |
+
# # Feature Extraction (example: MFCCs)
|
254 |
+
# # mfccs = librosa.feature.mfcc(y=y_normalized, sr=target_sr, n_mfcc=20)
|
255 |
|
256 |
+
# # output_file_path = os.path.join(save_dir, f"{file_name_without_extension}.{extension}")
|
257 |
|
258 |
+
# # Write the audio data to the output file in .wav format
|
259 |
+
# # sf.write(path, y_normalized, target_sr)
|
260 |
|
261 |
+
# return audio_data, rate
|
262 |
|
263 |
# smile = opensmile.Smile(
|
264 |
# feature_set=opensmile.FeatureSet.ComParE_2016,
|