Spaces:
Runtime error
Runtime error
deveix
commited on
Commit
·
a1b9bc0
1
Parent(s):
e7838b2
add cnn
Browse files- app/main.py +122 -1
- requirements.txt +2 -1
app/main.py
CHANGED
|
@@ -22,6 +22,9 @@ import opensmile
|
|
| 22 |
|
| 23 |
import ffmpeg
|
| 24 |
import noisereduce as nr
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
default_sample_rate=22050
|
| 27 |
|
|
@@ -201,6 +204,124 @@ async def get_answer(item: Item, token: str = Depends(verify_token)):
|
|
| 201 |
# If there's an error, return a 500 error with the error's details
|
| 202 |
raise HTTPException(status_code=500, detail=str(e))
|
| 203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
# random forest
|
| 205 |
model = joblib.load('app/1713661391.0946255_trained_model.joblib')
|
| 206 |
pca = joblib.load('app/pca.pkl')
|
|
@@ -320,7 +441,7 @@ def repair_mp3_with_ffmpeg_python(input_path, output_path):
|
|
| 320 |
print(f"Failed to repair file {input_path}: {str(e.stderr)}")
|
| 321 |
|
| 322 |
|
| 323 |
-
@app.post("/
|
| 324 |
async def handle_audio(file: UploadFile = File(...)):
|
| 325 |
try:
|
| 326 |
# Ensure that we are handling an MP3 file
|
|
|
|
| 22 |
|
| 23 |
import ffmpeg
|
| 24 |
import noisereduce as nr
|
| 25 |
+
from tensorflow.keras.models import load_model
|
| 26 |
+
from tensorflow.keras.utils import to_categorical
|
| 27 |
+
from tensorflow.keras.models import Sequential
|
| 28 |
|
| 29 |
default_sample_rate=22050
|
| 30 |
|
|
|
|
| 204 |
# If there's an error, return a 500 error with the error's details
|
| 205 |
raise HTTPException(status_code=500, detail=str(e))
|
| 206 |
|
| 207 |
+
# ------- CNN
|
| 208 |
+
|
| 209 |
+
# Constants
|
| 210 |
+
TARGET_DURATION = 3 # seconds for each audio clip
|
| 211 |
+
SAMPLE_RATE = 44100 # sample rate to use
|
| 212 |
+
N_MELS = 128 # number of Mel bands to generate
|
| 213 |
+
HOP_LENGTH = 512 # number of samples between successive frames
|
| 214 |
+
|
| 215 |
+
def preprocess_audio(file_path):
|
| 216 |
+
try:
|
| 217 |
+
# Load the audio file
|
| 218 |
+
audio, sr = librosa.load(file_path, sr=SAMPLE_RATE)
|
| 219 |
+
audio_length = len(audio)/SAMPLE_RATE
|
| 220 |
+
except FileNotFoundError:
|
| 221 |
+
print(f"Error: File '{file_path}' not found.")
|
| 222 |
+
return None
|
| 223 |
+
except Exception as e:
|
| 224 |
+
print(f"Error loading audio file: {e}")
|
| 225 |
+
return None
|
| 226 |
+
|
| 227 |
+
# Check if audio signal is None
|
| 228 |
+
if audio is None:
|
| 229 |
+
print(f"Error: Audio signal is None for file '{file_path}'.")
|
| 230 |
+
return None
|
| 231 |
+
|
| 232 |
+
audio, _ = librosa.effects.trim(audio, top_db = 25)
|
| 233 |
+
|
| 234 |
+
audio = nr.reduce_noise(y = audio, sr=SAMPLE_RATE, thresh_n_mult_nonstationary=1,stationary=False)
|
| 235 |
+
|
| 236 |
+
# Determine how many 20-second clips can be made from the audio
|
| 237 |
+
if audio_length < TARGET_DURATION:
|
| 238 |
+
# If audio is shorter than 20 seconds, pad it
|
| 239 |
+
pad_length = int((TARGET_DURATION - audio_length) * sr)
|
| 240 |
+
padded_audio = np.pad(audio, (0, pad_length), mode='constant')
|
| 241 |
+
return [padded_audio] # Return as a list for consistent output format
|
| 242 |
+
else:
|
| 243 |
+
# If audio is longer than or equal to 20 seconds, split it into 20-second clips
|
| 244 |
+
clip_length = TARGET_DURATION * sr
|
| 245 |
+
clips = []
|
| 246 |
+
for start in range(0, len(audio), clip_length):
|
| 247 |
+
end = start + clip_length
|
| 248 |
+
# Ensure the last clip has enough samples
|
| 249 |
+
if end > len(audio):
|
| 250 |
+
# Here you can choose to pad the last clip or simply not use it if it's too short
|
| 251 |
+
last_clip = np.pad(audio[start:], (0, end - len(audio)), mode='constant')
|
| 252 |
+
clips.append(last_clip)
|
| 253 |
+
else:
|
| 254 |
+
clips.append(audio[start:end])
|
| 255 |
+
return clips
|
| 256 |
+
|
| 257 |
+
def generate_spectrogram(audio):
|
| 258 |
+
# Generate a Mel-scaled spectrogram
|
| 259 |
+
S = librosa.feature.melspectrogram(y=audio, sr=SAMPLE_RATE, n_mels=N_MELS, hop_length=HOP_LENGTH)
|
| 260 |
+
S_dB = librosa.power_to_db(S, ref=np.max)
|
| 261 |
+
|
| 262 |
+
# Normalize the spectrogram to be between 0 and 1
|
| 263 |
+
S_dB_norm = librosa.util.normalize(S_dB)
|
| 264 |
+
|
| 265 |
+
return S_dB_norm
|
| 266 |
+
|
| 267 |
+
cnn_model = load_model('app/cnn.h5')
|
| 268 |
+
cnn_label_encoder = joblib.load('app/cnn_label_encoder.pkl')
|
| 269 |
+
|
| 270 |
+
@app.post("/cnn")
|
| 271 |
+
async def handle_cnn(file: UploadFile = File(...)):
|
| 272 |
+
try:
|
| 273 |
+
# Ensure that we are handling an MP3 file
|
| 274 |
+
if file.content_type == "audio/mpeg" or file.content_type == "audio/mp3":
|
| 275 |
+
file_extension = ".mp3"
|
| 276 |
+
elif file.content_type == "audio/wav":
|
| 277 |
+
file_extension = ".wav"
|
| 278 |
+
else:
|
| 279 |
+
raise HTTPException(status_code=400, detail="Invalid file type. Supported types: MP3, WAV.")
|
| 280 |
+
|
| 281 |
+
# Read the file's content
|
| 282 |
+
contents = await file.read()
|
| 283 |
+
temp_filename = f"app/{uuid4().hex}{file_extension}"
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
# Save file to a temporary file if needed or process directly from memory
|
| 287 |
+
with open(temp_filename, "wb") as f:
|
| 288 |
+
f.write(contents)
|
| 289 |
+
|
| 290 |
+
spectrograms = []
|
| 291 |
+
|
| 292 |
+
clips = preprocess_audio(temp_filename)
|
| 293 |
+
for clip in clips:
|
| 294 |
+
spectrogram = generate_spectrogram(clip)
|
| 295 |
+
if np.isnan(spectrogram).any() or np.isinf(spectrogram).any():
|
| 296 |
+
print("Invalid spectrogram detected")
|
| 297 |
+
continue
|
| 298 |
+
spectrograms.append(spectrogram)
|
| 299 |
+
X = np.array(spectrograms)
|
| 300 |
+
|
| 301 |
+
X = X[..., np.newaxis]
|
| 302 |
+
|
| 303 |
+
# Make predictions
|
| 304 |
+
predictions = cnn_model.predict(X)
|
| 305 |
+
|
| 306 |
+
# Convert predictions to label indexes
|
| 307 |
+
predicted_label_indexes = np.argmax(predictions, axis=1)
|
| 308 |
+
|
| 309 |
+
# Convert label indexes to actual label names
|
| 310 |
+
predicted_labels = cnn_label_encoder.inverse_transform(predicted_label_indexes)
|
| 311 |
+
|
| 312 |
+
print('decoded', predicted_labels)
|
| 313 |
+
# .tolist()
|
| 314 |
+
# Clean up the temporary file
|
| 315 |
+
os.remove(temp_filename)
|
| 316 |
+
# Return a successful response with decoded predictions
|
| 317 |
+
return {"message": "File processed successfully", "sheikh": predicted_labels}
|
| 318 |
+
except Exception as e:
|
| 319 |
+
print(e)
|
| 320 |
+
# Handle possible exceptions
|
| 321 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
|
| 325 |
# random forest
|
| 326 |
model = joblib.load('app/1713661391.0946255_trained_model.joblib')
|
| 327 |
pca = joblib.load('app/pca.pkl')
|
|
|
|
| 441 |
print(f"Failed to repair file {input_path}: {str(e.stderr)}")
|
| 442 |
|
| 443 |
|
| 444 |
+
@app.post("/rf")
|
| 445 |
async def handle_audio(file: UploadFile = File(...)):
|
| 446 |
try:
|
| 447 |
# Ensure that we are handling an MP3 file
|
requirements.txt
CHANGED
|
@@ -19,4 +19,5 @@ matplotlib
|
|
| 19 |
python-multipart
|
| 20 |
ffmpeg-python
|
| 21 |
noisereduce
|
| 22 |
-
scikit-learn==1.2.2
|
|
|
|
|
|
| 19 |
python-multipart
|
| 20 |
ffmpeg-python
|
| 21 |
noisereduce
|
| 22 |
+
scikit-learn==1.2.2
|
| 23 |
+
tensorflow
|