Spaces:
Running
Running
deveix
commited on
Commit
·
a1b9bc0
1
Parent(s):
e7838b2
add cnn
Browse files- app/main.py +122 -1
- requirements.txt +2 -1
app/main.py
CHANGED
@@ -22,6 +22,9 @@ import opensmile
|
|
22 |
|
23 |
import ffmpeg
|
24 |
import noisereduce as nr
|
|
|
|
|
|
|
25 |
|
26 |
default_sample_rate=22050
|
27 |
|
@@ -201,6 +204,124 @@ async def get_answer(item: Item, token: str = Depends(verify_token)):
|
|
201 |
# If there's an error, return a 500 error with the error's details
|
202 |
raise HTTPException(status_code=500, detail=str(e))
|
203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
# random forest
|
205 |
model = joblib.load('app/1713661391.0946255_trained_model.joblib')
|
206 |
pca = joblib.load('app/pca.pkl')
|
@@ -320,7 +441,7 @@ def repair_mp3_with_ffmpeg_python(input_path, output_path):
|
|
320 |
print(f"Failed to repair file {input_path}: {str(e.stderr)}")
|
321 |
|
322 |
|
323 |
-
@app.post("/
|
324 |
async def handle_audio(file: UploadFile = File(...)):
|
325 |
try:
|
326 |
# Ensure that we are handling an MP3 file
|
|
|
22 |
|
23 |
import ffmpeg
|
24 |
import noisereduce as nr
|
25 |
+
from tensorflow.keras.models import load_model
|
26 |
+
from tensorflow.keras.utils import to_categorical
|
27 |
+
from tensorflow.keras.models import Sequential
|
28 |
|
29 |
default_sample_rate=22050
|
30 |
|
|
|
204 |
# If there's an error, return a 500 error with the error's details
|
205 |
raise HTTPException(status_code=500, detail=str(e))
|
206 |
|
207 |
+
# ------- CNN
|
208 |
+
|
209 |
+
# Constants
|
210 |
+
TARGET_DURATION = 3 # seconds for each audio clip
|
211 |
+
SAMPLE_RATE = 44100 # sample rate to use
|
212 |
+
N_MELS = 128 # number of Mel bands to generate
|
213 |
+
HOP_LENGTH = 512 # number of samples between successive frames
|
214 |
+
|
215 |
+
def preprocess_audio(file_path):
|
216 |
+
try:
|
217 |
+
# Load the audio file
|
218 |
+
audio, sr = librosa.load(file_path, sr=SAMPLE_RATE)
|
219 |
+
audio_length = len(audio)/SAMPLE_RATE
|
220 |
+
except FileNotFoundError:
|
221 |
+
print(f"Error: File '{file_path}' not found.")
|
222 |
+
return None
|
223 |
+
except Exception as e:
|
224 |
+
print(f"Error loading audio file: {e}")
|
225 |
+
return None
|
226 |
+
|
227 |
+
# Check if audio signal is None
|
228 |
+
if audio is None:
|
229 |
+
print(f"Error: Audio signal is None for file '{file_path}'.")
|
230 |
+
return None
|
231 |
+
|
232 |
+
audio, _ = librosa.effects.trim(audio, top_db = 25)
|
233 |
+
|
234 |
+
audio = nr.reduce_noise(y = audio, sr=SAMPLE_RATE, thresh_n_mult_nonstationary=1,stationary=False)
|
235 |
+
|
236 |
+
# Determine how many 20-second clips can be made from the audio
|
237 |
+
if audio_length < TARGET_DURATION:
|
238 |
+
# If audio is shorter than 20 seconds, pad it
|
239 |
+
pad_length = int((TARGET_DURATION - audio_length) * sr)
|
240 |
+
padded_audio = np.pad(audio, (0, pad_length), mode='constant')
|
241 |
+
return [padded_audio] # Return as a list for consistent output format
|
242 |
+
else:
|
243 |
+
# If audio is longer than or equal to 20 seconds, split it into 20-second clips
|
244 |
+
clip_length = TARGET_DURATION * sr
|
245 |
+
clips = []
|
246 |
+
for start in range(0, len(audio), clip_length):
|
247 |
+
end = start + clip_length
|
248 |
+
# Ensure the last clip has enough samples
|
249 |
+
if end > len(audio):
|
250 |
+
# Here you can choose to pad the last clip or simply not use it if it's too short
|
251 |
+
last_clip = np.pad(audio[start:], (0, end - len(audio)), mode='constant')
|
252 |
+
clips.append(last_clip)
|
253 |
+
else:
|
254 |
+
clips.append(audio[start:end])
|
255 |
+
return clips
|
256 |
+
|
257 |
+
def generate_spectrogram(audio):
|
258 |
+
# Generate a Mel-scaled spectrogram
|
259 |
+
S = librosa.feature.melspectrogram(y=audio, sr=SAMPLE_RATE, n_mels=N_MELS, hop_length=HOP_LENGTH)
|
260 |
+
S_dB = librosa.power_to_db(S, ref=np.max)
|
261 |
+
|
262 |
+
# Normalize the spectrogram to be between 0 and 1
|
263 |
+
S_dB_norm = librosa.util.normalize(S_dB)
|
264 |
+
|
265 |
+
return S_dB_norm
|
266 |
+
|
267 |
+
cnn_model = load_model('app/cnn.h5')
|
268 |
+
cnn_label_encoder = joblib.load('app/cnn_label_encoder.pkl')
|
269 |
+
|
270 |
+
@app.post("/cnn")
|
271 |
+
async def handle_cnn(file: UploadFile = File(...)):
|
272 |
+
try:
|
273 |
+
# Ensure that we are handling an MP3 file
|
274 |
+
if file.content_type == "audio/mpeg" or file.content_type == "audio/mp3":
|
275 |
+
file_extension = ".mp3"
|
276 |
+
elif file.content_type == "audio/wav":
|
277 |
+
file_extension = ".wav"
|
278 |
+
else:
|
279 |
+
raise HTTPException(status_code=400, detail="Invalid file type. Supported types: MP3, WAV.")
|
280 |
+
|
281 |
+
# Read the file's content
|
282 |
+
contents = await file.read()
|
283 |
+
temp_filename = f"app/{uuid4().hex}{file_extension}"
|
284 |
+
|
285 |
+
|
286 |
+
# Save file to a temporary file if needed or process directly from memory
|
287 |
+
with open(temp_filename, "wb") as f:
|
288 |
+
f.write(contents)
|
289 |
+
|
290 |
+
spectrograms = []
|
291 |
+
|
292 |
+
clips = preprocess_audio(temp_filename)
|
293 |
+
for clip in clips:
|
294 |
+
spectrogram = generate_spectrogram(clip)
|
295 |
+
if np.isnan(spectrogram).any() or np.isinf(spectrogram).any():
|
296 |
+
print("Invalid spectrogram detected")
|
297 |
+
continue
|
298 |
+
spectrograms.append(spectrogram)
|
299 |
+
X = np.array(spectrograms)
|
300 |
+
|
301 |
+
X = X[..., np.newaxis]
|
302 |
+
|
303 |
+
# Make predictions
|
304 |
+
predictions = cnn_model.predict(X)
|
305 |
+
|
306 |
+
# Convert predictions to label indexes
|
307 |
+
predicted_label_indexes = np.argmax(predictions, axis=1)
|
308 |
+
|
309 |
+
# Convert label indexes to actual label names
|
310 |
+
predicted_labels = cnn_label_encoder.inverse_transform(predicted_label_indexes)
|
311 |
+
|
312 |
+
print('decoded', predicted_labels)
|
313 |
+
# .tolist()
|
314 |
+
# Clean up the temporary file
|
315 |
+
os.remove(temp_filename)
|
316 |
+
# Return a successful response with decoded predictions
|
317 |
+
return {"message": "File processed successfully", "sheikh": predicted_labels}
|
318 |
+
except Exception as e:
|
319 |
+
print(e)
|
320 |
+
# Handle possible exceptions
|
321 |
+
raise HTTPException(status_code=500, detail=str(e))
|
322 |
+
|
323 |
+
|
324 |
+
|
325 |
# random forest
|
326 |
model = joblib.load('app/1713661391.0946255_trained_model.joblib')
|
327 |
pca = joblib.load('app/pca.pkl')
|
|
|
441 |
print(f"Failed to repair file {input_path}: {str(e.stderr)}")
|
442 |
|
443 |
|
444 |
+
@app.post("/rf")
|
445 |
async def handle_audio(file: UploadFile = File(...)):
|
446 |
try:
|
447 |
# Ensure that we are handling an MP3 file
|
requirements.txt
CHANGED
@@ -19,4 +19,5 @@ matplotlib
|
|
19 |
python-multipart
|
20 |
ffmpeg-python
|
21 |
noisereduce
|
22 |
-
scikit-learn==1.2.2
|
|
|
|
19 |
python-multipart
|
20 |
ffmpeg-python
|
21 |
noisereduce
|
22 |
+
scikit-learn==1.2.2
|
23 |
+
tensorflow
|