deveix commited on
Commit
f013965
·
1 Parent(s): 4d5d2d1

add new models

Browse files
Files changed (1) hide show
  1. app/main.py +7 -7
app/main.py CHANGED
@@ -182,10 +182,10 @@ async def get_answer(item: Item, token: str = Depends(verify_token)):
182
  raise HTTPException(status_code=500, detail=str(e))
183
 
184
  # naive bayes
185
- model = joblib.load('app/1713630229.4965415_trained_model.joblib')
186
  pca = joblib.load('app/pca.pkl')
187
- scaler = joblib.load('app/scaler.pkl')
188
- label_encoder = joblib.load('app/label_encoder.pkl')
189
 
190
  # def preprocess_audio(path, save_dir):
191
  # y, sr = librosa.load(path)
@@ -332,23 +332,23 @@ async def handle_audio(file: UploadFile = File(...)):
332
  # features = extract_features(temp_filename)
333
  print("Extracted Features:", features)
334
 
335
- # features = scaler.transform(features)
336
  # features = pca.transform(features)
337
  features = np.array(features).reshape(1, -1)
338
 
339
  # proceed with an inference
340
  results = model.predict(features)
341
- print(results)
342
  # decoded_predictions = [label_encoder.classes_[i] for i in results]
343
 
344
  # # Decode the predictions using the label encoder
345
- # decoded_predictions = label_encoder.inverse_transform(results)
 
346
  # .tolist()
347
  # Clean up the temporary file
348
  os.remove(temp_filename)
349
 
350
  # Return a successful response with decoded predictions
351
- return {"message": "File processed successfully", "prediction": results}
352
  except Exception as e:
353
  print(e)
354
  # Handle possible exceptions
 
182
  raise HTTPException(status_code=500, detail=str(e))
183
 
184
  # naive bayes
185
+ model = joblib.load('app/1713638595.315147_trained_model')
186
  pca = joblib.load('app/pca.pkl')
187
+ scaler = joblib.load('app/1713638595.3178492_scaler.joblib')
188
+ label_encoder = joblib.load('app/1713638744.044928_label_encoder.joblib')
189
 
190
  # def preprocess_audio(path, save_dir):
191
  # y, sr = librosa.load(path)
 
332
  # features = extract_features(temp_filename)
333
  print("Extracted Features:", features)
334
 
335
+ features = scaler.transform(features)
336
  # features = pca.transform(features)
337
  features = np.array(features).reshape(1, -1)
338
 
339
  # proceed with an inference
340
  results = model.predict(features)
 
341
  # decoded_predictions = [label_encoder.classes_[i] for i in results]
342
 
343
  # # Decode the predictions using the label encoder
344
+ decoded_predictions = label_encoder.inverse_transform(results)
345
+ print(decoded_predictions)
346
  # .tolist()
347
  # Clean up the temporary file
348
  os.remove(temp_filename)
349
 
350
  # Return a successful response with decoded predictions
351
+ return {"message": "File processed successfully", "prediction": decoded_predictions}
352
  except Exception as e:
353
  print(e)
354
  # Handle possible exceptions