Spaces:
Sleeping
Sleeping
File size: 11,281 Bytes
7e4e175 8da495a 870245a 8da495a 93a2c3f 8da495a 93a2c3f 67a5c18 4a9e5f8 88dbd55 870245a 2ac79ea 870245a 93a2c3f 67a5c18 870245a 8da495a 7ffd02f 870245a 8da495a 870245a a2a02fa 93a2c3f 4a9e5f8 8955717 4a9e5f8 93a2c3f c9f3a0d 8955717 4a9e5f8 c9f3a0d 4a9e5f8 8955717 c9f3a0d 4a9e5f8 c9f3a0d 4a9e5f8 c9f3a0d a2a02fa 8955717 7ffd02f 870245a 3a4bc44 870245a 88dbd55 870245a 67a5c18 8da495a 7ffd02f 870245a 7ffd02f 8fd0cb7 7ffd02f 870245a 88dbd55 a2a02fa 870245a 55f1be4 870245a 8da495a 870245a c9f3a0d 870245a 8da495a 8955717 8da495a 870245a c9f3a0d 7ead975 8da495a 870245a 8da495a c9f3a0d 8da495a 870245a 8da495a 870245a f291561 870245a f291561 870245a f291561 870245a f291561 870245a 8da495a 4a9e5f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
# train_model.py (Training Script)
import argparse
from transformers import (
GPT2Config,
GPT2LMHeadModel,
BertConfig,
BertForSequenceClassification,
Trainer,
TrainingArguments,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorWithPadding,
)
from datasets import load_dataset
import torch
import os
from huggingface_hub import login, HfApi
import logging
from torch.optim import AdamW
def setup_logging(log_file_path):
"""
Sets up logging to both console and a file.
"""
logger = logging.getLogger()
logger.setLevel(logging.INFO)
# Create handlers
c_handler = logging.StreamHandler()
f_handler = logging.FileHandler(log_file_path)
c_handler.setLevel(logging.INFO)
f_handler.setLevel(logging.INFO)
# Create formatters and add to handlers
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
c_handler.setFormatter(formatter)
f_handler.setFormatter(formatter)
# Add handlers to the logger
logger.addHandler(c_handler)
logger.addHandler(f_handler)
def parse_arguments():
"""
Parses command-line arguments.
"""
parser = argparse.ArgumentParser(description="Train a custom LLM.")
parser.add_argument("--task", type=str, required=True, choices=["generation", "classification"],
help="Task type: 'generation' or 'classification'")
parser.add_argument("--model_name", type=str, required=True, help="Name of the model")
parser.add_argument("--dataset_name", type=str, required=True, help="Name of the Hugging Face dataset (e.g., 'wikitext/wikitext-2-raw-v1')")
parser.add_argument("--num_layers", type=int, default=12, help="Number of hidden layers")
parser.add_argument("--attention_heads", type=int, default=1, help="Number of attention heads")
parser.add_argument("--hidden_size", type=int, default=64, help="Hidden size of the model")
parser.add_argument("--vocab_size", type=int, default=30000, help="Vocabulary size")
parser.add_argument("--sequence_length", type=int, default=512, help="Maximum sequence length")
args = parser.parse_args()
return args
def load_and_prepare_dataset(task, dataset_name, tokenizer, sequence_length):
"""
Loads and tokenizes the dataset based on the task.
"""
logging.info(f"Loading dataset '{dataset_name}' for task '{task}'...")
try:
dataset = load_dataset(dataset_name, split='train')
logging.info("Dataset loaded successfully.")
# Log some examples to check dataset structure
logging.info(f"Example data from the dataset: {dataset[:5]}")
def clean_text(text):
# Ensure each text is a string
if isinstance(text, list):
return " ".join([str(t) for t in text])
return str(text)
def tokenize_function(examples):
try:
# Clean text to ensure correct format
examples['text'] = [clean_text(text) for text in examples['text']]
# Log the type and structure of text to debug
logging.info(f"Type of examples['text']: {type(examples['text'])}")
logging.info(f"First example type: {type(examples['text'][0])}")
# Tokenize with truncation and padding
tokens = tokenizer(
examples['text'],
truncation=True,
max_length=sequence_length,
padding=False, # Defer padding to data collator
return_tensors=None # Let the data collator handle tensor creation
)
# Log the tokens for debugging
logging.info(f"Tokenized example: {tokens}")
return tokens
except Exception as e:
logging.error(f"Error during tokenization: {e}")
logging.error(f"Problematic example: {examples}")
raise e
# Tokenize the dataset using the modified tokenize_function
tokenized_datasets = dataset.shuffle(seed=42).select(range(500)).map(tokenize_function, batched=True)
logging.info("Dataset tokenization complete.")
return tokenized_datasets
except Exception as e:
logging.error(f"Error loading or tokenizing dataset: {str(e)}")
raise e
def initialize_model(task, model_name, vocab_size, sequence_length, hidden_size, num_layers, attention_heads):
"""
Initializes the model configuration and model based on the task.
"""
logging.info(f"Initializing model for task '{task}'...")
try:
if task == "generation":
config = GPT2Config(
vocab_size=vocab_size,
n_positions=sequence_length,
n_ctx=sequence_length,
n_embd=hidden_size,
num_hidden_layers=num_layers,
num_attention_heads=attention_heads,
intermediate_size=4 * hidden_size,
hidden_act='gelu',
use_cache=True,
)
model = GPT2LMHeadModel(config)
logging.info("GPT2LMHeadModel initialized successfully.")
elif task == "classification":
config = BertConfig(
vocab_size=vocab_size,
max_position_embeddings=sequence_length,
hidden_size=hidden_size,
num_hidden_layers=num_layers,
num_attention_heads=attention_heads,
intermediate_size=4 * hidden_size,
hidden_act='gelu',
num_labels=2 # Adjust based on your classification task
)
model = BertForSequenceClassification(config)
logging.info("BertForSequenceClassification initialized successfully.")
else:
raise ValueError("Unsupported task type")
return model
except Exception as e:
logging.error(f"Error initializing model: {str(e)}")
raise e
def get_optimizer(model, learning_rate):
"""
Returns the AdamW optimizer from PyTorch.
"""
return AdamW(model.parameters(), lr=learning_rate)
def main():
# Parse arguments
args = parse_arguments()
# Setup logging
log_file = "training.log"
setup_logging(log_file)
logging.info("Training script started.")
# Initialize Hugging Face API
api = HfApi()
# Retrieve the Hugging Face API token from environment variables
hf_token = os.getenv("HF_API_TOKEN")
if not hf_token:
logging.error("HF_API_TOKEN environment variable not set.")
raise ValueError("HF_API_TOKEN environment variable not set.")
# Perform login using the API token
try:
login(token=hf_token)
logging.info("Successfully logged in to Hugging Face Hub.")
except Exception as e:
logging.error(f"Failed to log in to Hugging Face Hub: {str(e)}")
raise e
# Initialize tokenizer
try:
logging.info("Initializing tokenizer...")
if args.task == "generation":
tokenizer = AutoTokenizer.from_pretrained("gpt2")
elif args.task == "classification":
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
else:
raise ValueError("Unsupported task type")
logging.info("Tokenizer initialized successfully.")
# Set pad_token to eos_token if not already set
if tokenizer.pad_token is None:
logging.info("Setting pad_token to eos_token.")
tokenizer.pad_token = tokenizer.eos_token
# Initialize model
model = initialize_model(
task=args.task,
model_name=args.model_name,
vocab_size=args.vocab_size,
sequence_length=args.sequence_length,
hidden_size=args.hidden_size,
num_layers=args.num_layers,
attention_heads=args.attention_heads
)
model.resize_token_embeddings(len(tokenizer))
except Exception as e:
logging.error(f"Error initializing tokenizer or model: {str(e)}")
raise e
# Load and prepare dataset
try:
tokenized_datasets = load_and_prepare_dataset(
task=args.task,
dataset_name=args.dataset_name,
tokenizer=tokenizer,
sequence_length=args.sequence_length
)
except Exception as e:
logging.error("Failed to load and prepare dataset.")
raise e
# Define data collator
if args.task == "generation":
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
elif args.task == "classification":
data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding='longest') # Handle padding dynamically during batching
else:
logging.error("Unsupported task type for data collator.")
raise ValueError("Unsupported task type for data collator.")
# Define training arguments
training_args = TrainingArguments(
output_dir=f"./models/{args.model_name}",
num_train_epochs=3,
per_device_train_batch_size=8 if args.task == "generation" else 16,
save_steps=5000,
save_total_limit=2,
logging_steps=500,
learning_rate=5e-4 if args.task == "generation" else 5e-5,
remove_unused_columns=False,
push_to_hub=False
)
# Initialize Trainer with the data collator
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets,
data_collator=data_collator,
optimizers=(get_optimizer(model, training_args.learning_rate), None)
)
# Start training
logging.info("Starting training...")
try:
trainer.train()
logging.info("Training completed successfully.")
except Exception as e:
logging.error(f"Error during training: {str(e)}")
raise e
# Save the final model and tokenizer
try:
trainer.save_model(training_args.output_dir)
tokenizer.save_pretrained(training_args.output_dir)
logging.info(f"Model and tokenizer saved to '{training_args.output_dir}'.")
except Exception as e:
logging.error(f"Error saving model or tokenizer: {str(e)}")
raise e
# Push the model to Hugging Face Hub
model_repo = f"{api.whoami(token=hf_token)['name']}/{args.model_name}"
try:
logging.info(f"Pushing model to Hugging Face Hub at '{model_repo}'...")
api.create_repo(repo_id=model_repo, private=False, token=hf_token)
logging.info(f"Repository '{model_repo}' created successfully.")
except Exception as e:
logging.warning(f"Repository might already exist: {str(e)}")
try:
model.push_to_hub(model_repo, use_auth_token=hf_token)
tokenizer.push_to_hub(model_repo, use_auth_token=hf_token)
logging.info(f"Model and tokenizer pushed to Hugging Face Hub at '{model_repo}'.")
except Exception as e:
logging.error(f"Error pushing model to Hugging Face Hub: {str(e)}")
raise e
logging.info("Training script finished successfully.")
if __name__ == "__main__":
main()
|