Spaces:
Sleeping
Sleeping
Update train_model.py
Browse files- train_model.py +213 -98
train_model.py
CHANGED
@@ -2,10 +2,15 @@
|
|
2 |
|
3 |
import argparse
|
4 |
from transformers import (
|
5 |
-
GPT2Config,
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
)
|
10 |
from datasets import load_dataset, Dataset
|
11 |
import torch
|
@@ -13,110 +18,196 @@ import os
|
|
13 |
from huggingface_hub import HfApi, HfFolder
|
14 |
import logging
|
15 |
|
16 |
-
def
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
parser.add_argument("--model_name", type=str, required=True, help="Name of the model")
|
30 |
-
parser.add_argument("--dataset_name", type=str, required=True, help="Name of the Hugging Face dataset")
|
31 |
-
parser.add_argument("--num_layers", type=int, default=12)
|
32 |
-
parser.add_argument("--attention_heads", type=int, default=1)
|
33 |
-
parser.add_argument("--hidden_size", type=int, default=64)
|
34 |
-
parser.add_argument("--vocab_size", type=int, default=30000)
|
35 |
-
parser.add_argument("--sequence_length", type=int, default=512)
|
36 |
args = parser.parse_args()
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
# Define output directory
|
41 |
-
output_dir = f"./models/{args.model_name}"
|
42 |
-
os.makedirs(output_dir, exist_ok=True)
|
43 |
-
|
44 |
# Initialize Hugging Face API
|
45 |
api = HfApi()
|
46 |
hf_token = HfFolder.get_token()
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
# Load and prepare dataset
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
raise ValueError("Unsupported task type")
|
68 |
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
if args.task == "generation":
|
72 |
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
73 |
elif args.task == "classification":
|
74 |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
75 |
-
|
76 |
-
# Initialize model based on task
|
77 |
-
if args.task == "generation":
|
78 |
-
config = GPT2Config(
|
79 |
-
vocab_size=args.vocab_size,
|
80 |
-
n_positions=args.sequence_length,
|
81 |
-
n_ctx=args.sequence_length,
|
82 |
-
n_embd=args.hidden_size,
|
83 |
-
num_hidden_layers=args.num_layers,
|
84 |
-
num_attention_heads=args.attention_heads,
|
85 |
-
intermediate_size=4 * args.hidden_size,
|
86 |
-
hidden_act='gelu',
|
87 |
-
use_cache=True
|
88 |
-
)
|
89 |
-
model = GPT2LMHeadModel(config)
|
90 |
-
elif args.task == "classification":
|
91 |
-
config = BertConfig(
|
92 |
-
vocab_size=args.vocab_size,
|
93 |
-
max_position_embeddings=args.sequence_length,
|
94 |
-
hidden_size=args.hidden_size,
|
95 |
-
num_hidden_layers=args.num_layers,
|
96 |
-
num_attention_heads=args.attention_heads,
|
97 |
-
intermediate_size=4 * args.hidden_size,
|
98 |
-
hidden_act='gelu',
|
99 |
-
num_labels=2 # Adjust based on your classification task
|
100 |
-
)
|
101 |
-
model = BertForSequenceClassification(config)
|
102 |
else:
|
103 |
-
|
104 |
-
|
|
|
105 |
# Define training arguments
|
106 |
if args.task == "generation":
|
107 |
training_args = TrainingArguments(
|
108 |
-
output_dir=
|
109 |
num_train_epochs=3,
|
110 |
per_device_train_batch_size=8,
|
111 |
save_steps=5000,
|
112 |
save_total_limit=2,
|
113 |
logging_steps=500,
|
114 |
learning_rate=5e-4,
|
115 |
-
remove_unused_columns=False
|
|
|
116 |
)
|
117 |
elif args.task == "classification":
|
118 |
training_args = TrainingArguments(
|
119 |
-
output_dir=
|
120 |
num_train_epochs=3,
|
121 |
per_device_train_batch_size=16,
|
122 |
evaluation_strategy="epoch",
|
@@ -124,37 +215,61 @@ def main():
|
|
124 |
save_total_limit=2,
|
125 |
logging_steps=500,
|
126 |
learning_rate=5e-5,
|
127 |
-
remove_unused_columns=False
|
|
|
128 |
)
|
129 |
-
|
|
|
|
|
|
|
130 |
# Initialize Trainer
|
131 |
trainer = Trainer(
|
132 |
model=model,
|
133 |
args=training_args,
|
134 |
-
train_dataset=tokenized_datasets
|
135 |
data_collator=data_collator,
|
136 |
)
|
137 |
-
|
138 |
# Start training
|
139 |
-
|
140 |
-
|
141 |
-
# Save the final model
|
142 |
-
trainer.save_model(output_dir)
|
143 |
-
tokenizer.save_pretrained(output_dir)
|
144 |
-
|
145 |
-
# Push to Hugging Face Hub
|
146 |
-
model_repo = f"your-username/{args.model_name}" # Replace 'your-username' with your actual username
|
147 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
api.create_repo(repo_id=model_repo, private=False, token=hf_token)
|
|
|
149 |
except Exception as e:
|
150 |
-
logging.warning(f"Repository might already exist: {e}")
|
151 |
-
model.push_to_hub(model_repo, use_auth_token=hf_token)
|
152 |
-
tokenizer.push_to_hub(model_repo, use_auth_token=hf_token)
|
153 |
-
|
154 |
-
logging.info(f"Model '{args.model_name}' trained and pushed to Hugging Face Hub at '{model_repo}'.")
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
if __name__ == "__main__":
|
157 |
main()
|
158 |
|
159 |
|
160 |
|
|
|
|
2 |
|
3 |
import argparse
|
4 |
from transformers import (
|
5 |
+
GPT2Config,
|
6 |
+
GPT2LMHeadModel,
|
7 |
+
BertConfig,
|
8 |
+
BertForSequenceClassification,
|
9 |
+
Trainer,
|
10 |
+
TrainingArguments,
|
11 |
+
AutoTokenizer,
|
12 |
+
DataCollatorForLanguageModeling,
|
13 |
+
DataCollatorWithPadding,
|
14 |
)
|
15 |
from datasets import load_dataset, Dataset
|
16 |
import torch
|
|
|
18 |
from huggingface_hub import HfApi, HfFolder
|
19 |
import logging
|
20 |
|
21 |
+
def setup_logging(log_file_path):
|
22 |
+
"""
|
23 |
+
Sets up logging to both console and a file.
|
24 |
+
"""
|
25 |
+
logger = logging.getLogger()
|
26 |
+
logger.setLevel(logging.INFO)
|
27 |
+
|
28 |
+
# Create handlers
|
29 |
+
c_handler = logging.StreamHandler()
|
30 |
+
f_handler = logging.FileHandler(log_file_path)
|
31 |
+
c_handler.setLevel(logging.INFO)
|
32 |
+
f_handler.setLevel(logging.INFO)
|
33 |
|
34 |
+
# Create formatters and add to handlers
|
35 |
+
c_format = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
36 |
+
f_format = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
37 |
+
c_handler.setFormatter(c_format)
|
38 |
+
f_handler.setFormatter(f_format)
|
39 |
|
40 |
+
# Add handlers to the logger
|
41 |
+
logger.addHandler(c_handler)
|
42 |
+
logger.addHandler(f_handler)
|
43 |
+
|
44 |
+
def parse_arguments():
|
45 |
+
"""
|
46 |
+
Parses command-line arguments.
|
47 |
+
"""
|
48 |
+
parser = argparse.ArgumentParser(description="Train a custom LLM.")
|
49 |
+
parser.add_argument("--task", type=str, required=True, choices=["generation", "classification"],
|
50 |
+
help="Task type: 'generation' or 'classification'")
|
51 |
parser.add_argument("--model_name", type=str, required=True, help="Name of the model")
|
52 |
+
parser.add_argument("--dataset_name", type=str, required=True, help="Name of the Hugging Face dataset (e.g., 'username/dataset')")
|
53 |
+
parser.add_argument("--num_layers", type=int, default=12, help="Number of hidden layers")
|
54 |
+
parser.add_argument("--attention_heads", type=int, default=1, help="Number of attention heads")
|
55 |
+
parser.add_argument("--hidden_size", type=int, default=64, help="Hidden size of the model")
|
56 |
+
parser.add_argument("--vocab_size", type=int, default=30000, help="Vocabulary size")
|
57 |
+
parser.add_argument("--sequence_length", type=int, default=512, help="Maximum sequence length")
|
58 |
args = parser.parse_args()
|
59 |
+
return args
|
60 |
+
|
61 |
+
def load_and_prepare_dataset(task, dataset_name, tokenizer, sequence_length):
|
62 |
+
"""
|
63 |
+
Loads and tokenizes the dataset based on the task.
|
64 |
+
"""
|
65 |
+
logging.info(f"Loading dataset '{dataset_name}' for task '{task}'...")
|
66 |
+
try:
|
67 |
+
if task == "generation":
|
68 |
+
dataset = load_dataset(dataset_name, split='train')
|
69 |
+
logging.info("Dataset loaded successfully for generation task.")
|
70 |
+
def tokenize_function(examples):
|
71 |
+
return tokenizer(examples['text'], truncation=True, max_length=sequence_length)
|
72 |
+
elif task == "classification":
|
73 |
+
dataset = load_dataset(dataset_name, split='train')
|
74 |
+
logging.info("Dataset loaded successfully for classification task.")
|
75 |
+
# Assuming the dataset has 'text' and 'label' columns
|
76 |
+
def tokenize_function(examples):
|
77 |
+
return tokenizer(examples['text'], truncation=True, max_length=sequence_length)
|
78 |
+
else:
|
79 |
+
raise ValueError("Unsupported task type")
|
80 |
+
|
81 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
82 |
+
logging.info("Dataset tokenization complete.")
|
83 |
+
return tokenized_datasets
|
84 |
+
except Exception as e:
|
85 |
+
logging.error(f"Error loading or tokenizing dataset: {str(e)}")
|
86 |
+
raise e
|
87 |
+
|
88 |
+
def initialize_model(task, model_name, vocab_size, sequence_length, hidden_size, num_layers, attention_heads):
|
89 |
+
"""
|
90 |
+
Initializes the model configuration and model based on the task.
|
91 |
+
"""
|
92 |
+
logging.info(f"Initializing model for task '{task}'...")
|
93 |
+
try:
|
94 |
+
if task == "generation":
|
95 |
+
config = GPT2Config(
|
96 |
+
vocab_size=vocab_size,
|
97 |
+
n_positions=sequence_length,
|
98 |
+
n_ctx=sequence_length,
|
99 |
+
n_embd=hidden_size,
|
100 |
+
num_hidden_layers=num_layers,
|
101 |
+
num_attention_heads=attention_heads,
|
102 |
+
intermediate_size=4 * hidden_size,
|
103 |
+
hidden_act='gelu',
|
104 |
+
use_cache=True
|
105 |
+
)
|
106 |
+
model = GPT2LMHeadModel(config)
|
107 |
+
logging.info("GPT2LMHeadModel initialized successfully.")
|
108 |
+
elif task == "classification":
|
109 |
+
config = BertConfig(
|
110 |
+
vocab_size=vocab_size,
|
111 |
+
max_position_embeddings=sequence_length,
|
112 |
+
hidden_size=hidden_size,
|
113 |
+
num_hidden_layers=num_layers,
|
114 |
+
num_attention_heads=attention_heads,
|
115 |
+
intermediate_size=4 * hidden_size,
|
116 |
+
hidden_act='gelu',
|
117 |
+
num_labels=2 # Adjust based on your classification task
|
118 |
+
)
|
119 |
+
model = BertForSequenceClassification(config)
|
120 |
+
logging.info("BertForSequenceClassification initialized successfully.")
|
121 |
+
else:
|
122 |
+
raise ValueError("Unsupported task type")
|
123 |
+
|
124 |
+
return model
|
125 |
+
except Exception as e:
|
126 |
+
logging.error(f"Error initializing model: {str(e)}")
|
127 |
+
raise e
|
128 |
+
|
129 |
+
def main():
|
130 |
+
# Parse arguments
|
131 |
+
args = parse_arguments()
|
132 |
+
|
133 |
+
# Setup logging
|
134 |
+
log_file = "training.log"
|
135 |
+
setup_logging(log_file)
|
136 |
+
logging.info("Training script started.")
|
137 |
|
|
|
|
|
|
|
|
|
138 |
# Initialize Hugging Face API
|
139 |
api = HfApi()
|
140 |
hf_token = HfFolder.get_token()
|
141 |
+
if not hf_token:
|
142 |
+
logging.error("HF_API_TOKEN is not set. Please set it as an environment variable.")
|
143 |
+
raise ValueError("HF_API_TOKEN is not set.")
|
144 |
+
|
145 |
+
# Initialize tokenizer
|
146 |
+
try:
|
147 |
+
logging.info("Initializing tokenizer...")
|
148 |
+
if args.task == "generation":
|
149 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
150 |
+
elif args.task == "classification":
|
151 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
152 |
+
else:
|
153 |
+
raise ValueError("Unsupported task type")
|
154 |
+
logging.info("Tokenizer initialized successfully.")
|
155 |
+
except Exception as e:
|
156 |
+
logging.error(f"Error initializing tokenizer: {str(e)}")
|
157 |
+
raise e
|
158 |
+
|
159 |
# Load and prepare dataset
|
160 |
+
try:
|
161 |
+
tokenized_datasets = load_and_prepare_dataset(
|
162 |
+
task=args.task,
|
163 |
+
dataset_name=args.dataset_name,
|
164 |
+
tokenizer=tokenizer,
|
165 |
+
sequence_length=args.sequence_length
|
166 |
+
)
|
167 |
+
except Exception as e:
|
168 |
+
logging.error("Failed to load and prepare dataset.")
|
169 |
+
raise e
|
|
|
170 |
|
171 |
+
# Initialize model
|
172 |
+
try:
|
173 |
+
model = initialize_model(
|
174 |
+
task=args.task,
|
175 |
+
model_name=args.model_name,
|
176 |
+
vocab_size=args.vocab_size,
|
177 |
+
sequence_length=args.sequence_length,
|
178 |
+
hidden_size=args.hidden_size,
|
179 |
+
num_layers=args.num_layers,
|
180 |
+
attention_heads=args.attention_heads
|
181 |
+
)
|
182 |
+
except Exception as e:
|
183 |
+
logging.error("Failed to initialize model.")
|
184 |
+
raise e
|
185 |
+
|
186 |
+
# Define data collator
|
187 |
if args.task == "generation":
|
188 |
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
189 |
elif args.task == "classification":
|
190 |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
else:
|
192 |
+
logging.error("Unsupported task type for data collator.")
|
193 |
+
raise ValueError("Unsupported task type for data collator.")
|
194 |
+
|
195 |
# Define training arguments
|
196 |
if args.task == "generation":
|
197 |
training_args = TrainingArguments(
|
198 |
+
output_dir=f"./models/{args.model_name}",
|
199 |
num_train_epochs=3,
|
200 |
per_device_train_batch_size=8,
|
201 |
save_steps=5000,
|
202 |
save_total_limit=2,
|
203 |
logging_steps=500,
|
204 |
learning_rate=5e-4,
|
205 |
+
remove_unused_columns=False,
|
206 |
+
push_to_hub=False # We'll handle pushing manually
|
207 |
)
|
208 |
elif args.task == "classification":
|
209 |
training_args = TrainingArguments(
|
210 |
+
output_dir=f"./models/{args.model_name}",
|
211 |
num_train_epochs=3,
|
212 |
per_device_train_batch_size=16,
|
213 |
evaluation_strategy="epoch",
|
|
|
215 |
save_total_limit=2,
|
216 |
logging_steps=500,
|
217 |
learning_rate=5e-5,
|
218 |
+
remove_unused_columns=False,
|
219 |
+
push_to_hub=False # We'll handle pushing manually
|
220 |
)
|
221 |
+
else:
|
222 |
+
logging.error("Unsupported task type for training arguments.")
|
223 |
+
raise ValueError("Unsupported task type for training arguments.")
|
224 |
+
|
225 |
# Initialize Trainer
|
226 |
trainer = Trainer(
|
227 |
model=model,
|
228 |
args=training_args,
|
229 |
+
train_dataset=tokenized_datasets,
|
230 |
data_collator=data_collator,
|
231 |
)
|
232 |
+
|
233 |
# Start training
|
234 |
+
logging.info("Starting training...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
try:
|
236 |
+
trainer.train()
|
237 |
+
logging.info("Training completed successfully.")
|
238 |
+
except Exception as e:
|
239 |
+
logging.error(f"Error during training: {str(e)}")
|
240 |
+
raise e
|
241 |
+
|
242 |
+
# Save the final model and tokenizer
|
243 |
+
try:
|
244 |
+
trainer.save_model(training_args.output_dir)
|
245 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
246 |
+
logging.info(f"Model and tokenizer saved to '{training_args.output_dir}'.")
|
247 |
+
except Exception as e:
|
248 |
+
logging.error(f"Error saving model or tokenizer: {str(e)}")
|
249 |
+
raise e
|
250 |
+
|
251 |
+
# Push the model to Hugging Face Hub
|
252 |
+
model_repo = f"{api.whoami(token=hf_token)['name']}/{args.model_name}"
|
253 |
+
try:
|
254 |
+
logging.info(f"Pushing model to Hugging Face Hub at '{model_repo}'...")
|
255 |
api.create_repo(repo_id=model_repo, private=False, token=hf_token)
|
256 |
+
logging.info(f"Repository '{model_repo}' created successfully.")
|
257 |
except Exception as e:
|
258 |
+
logging.warning(f"Repository might already exist: {str(e)}")
|
|
|
|
|
|
|
|
|
259 |
|
260 |
+
try:
|
261 |
+
model.push_to_hub(model_repo, use_auth_token=hf_token)
|
262 |
+
tokenizer.push_to_hub(model_repo, use_auth_token=hf_token)
|
263 |
+
logging.info(f"Model and tokenizer pushed to Hugging Face Hub at '{model_repo}'.")
|
264 |
+
except Exception as e:
|
265 |
+
logging.error(f"Error pushing model to Hugging Face Hub: {str(e)}")
|
266 |
+
raise e
|
267 |
+
|
268 |
+
logging.info("Training script finished successfully.")
|
269 |
+
|
270 |
if __name__ == "__main__":
|
271 |
main()
|
272 |
|
273 |
|
274 |
|
275 |
+
|