Spaces:
Sleeping
Sleeping
Update train_model.py
Browse files- train_model.py +25 -13
train_model.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# train_model.py (Training Script)
|
2 |
-
|
3 |
import argparse
|
4 |
from transformers import (
|
5 |
GPT2Config,
|
@@ -15,7 +15,7 @@ from transformers import (
|
|
15 |
from datasets import load_dataset, Dataset
|
16 |
import torch
|
17 |
import os
|
18 |
-
from huggingface_hub import HfApi, HfFolder
|
19 |
import logging
|
20 |
|
21 |
def setup_logging(log_file_path):
|
@@ -49,7 +49,7 @@ def parse_arguments():
|
|
49 |
parser.add_argument("--task", type=str, required=True, choices=["generation", "classification"],
|
50 |
help="Task type: 'generation' or 'classification'")
|
51 |
parser.add_argument("--model_name", type=str, required=True, help="Name of the model")
|
52 |
-
parser.add_argument("--dataset_name", type=str, required=True, help="Name of the Hugging Face dataset (e.g., '
|
53 |
parser.add_argument("--num_layers", type=int, default=12, help="Number of hidden layers")
|
54 |
parser.add_argument("--attention_heads", type=int, default=1, help="Number of attention heads")
|
55 |
parser.add_argument("--hidden_size", type=int, default=64, help="Hidden size of the model")
|
@@ -65,14 +65,21 @@ def load_and_prepare_dataset(task, dataset_name, tokenizer, sequence_length):
|
|
65 |
logging.info(f"Loading dataset '{dataset_name}' for task '{task}'...")
|
66 |
try:
|
67 |
if task == "generation":
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
logging.info("Dataset loaded successfully for generation task.")
|
71 |
def tokenize_function(examples):
|
72 |
return tokenizer(examples['text'], truncation=True, max_length=sequence_length)
|
73 |
elif task == "classification":
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
76 |
logging.info("Dataset loaded successfully for classification task.")
|
77 |
# Assuming the dataset has 'text' and 'label' columns
|
78 |
def tokenize_function(examples):
|
@@ -80,7 +87,8 @@ def load_and_prepare_dataset(task, dataset_name, tokenizer, sequence_length):
|
|
80 |
else:
|
81 |
raise ValueError("Unsupported task type")
|
82 |
|
83 |
-
|
|
|
84 |
logging.info("Dataset tokenization complete.")
|
85 |
return tokenized_datasets
|
86 |
except Exception as e:
|
@@ -139,18 +147,22 @@ def main():
|
|
139 |
|
140 |
# Initialize Hugging Face API
|
141 |
api = HfApi()
|
142 |
-
|
|
|
|
|
143 |
if not hf_token:
|
144 |
-
logging.error("HF_API_TOKEN
|
145 |
-
raise ValueError("HF_API_TOKEN
|
146 |
-
|
147 |
-
#
|
148 |
try:
|
149 |
login(token=hf_token)
|
150 |
logging.info("Successfully logged in to Hugging Face Hub.")
|
151 |
except Exception as e:
|
152 |
logging.error(f"Failed to log in to Hugging Face Hub: {str(e)}")
|
153 |
raise e
|
|
|
|
|
154 |
try:
|
155 |
logging.info("Initializing tokenizer...")
|
156 |
if args.task == "generation":
|
|
|
1 |
# train_model.py (Training Script)
|
2 |
+
|
3 |
import argparse
|
4 |
from transformers import (
|
5 |
GPT2Config,
|
|
|
15 |
from datasets import load_dataset, Dataset
|
16 |
import torch
|
17 |
import os
|
18 |
+
from huggingface_hub import login, HfApi, HfFolder
|
19 |
import logging
|
20 |
|
21 |
def setup_logging(log_file_path):
|
|
|
49 |
parser.add_argument("--task", type=str, required=True, choices=["generation", "classification"],
|
50 |
help="Task type: 'generation' or 'classification'")
|
51 |
parser.add_argument("--model_name", type=str, required=True, help="Name of the model")
|
52 |
+
parser.add_argument("--dataset_name", type=str, required=True, help="Name of the Hugging Face dataset (e.g., 'wikitext/wikitext-2-raw-v1')")
|
53 |
parser.add_argument("--num_layers", type=int, default=12, help="Number of hidden layers")
|
54 |
parser.add_argument("--attention_heads", type=int, default=1, help="Number of attention heads")
|
55 |
parser.add_argument("--hidden_size", type=int, default=64, help="Hidden size of the model")
|
|
|
65 |
logging.info(f"Loading dataset '{dataset_name}' for task '{task}'...")
|
66 |
try:
|
67 |
if task == "generation":
|
68 |
+
# Check if dataset_name includes config
|
69 |
+
if '/' in dataset_name:
|
70 |
+
dataset, config = dataset_name.split('/', 1)
|
71 |
+
dataset = load_dataset(dataset, config, split='train[:1%]', use_auth_token=True)
|
72 |
+
else:
|
73 |
+
dataset = load_dataset(dataset_name, split='train[:1%]', use_auth_token=True)
|
74 |
logging.info("Dataset loaded successfully for generation task.")
|
75 |
def tokenize_function(examples):
|
76 |
return tokenizer(examples['text'], truncation=True, max_length=sequence_length)
|
77 |
elif task == "classification":
|
78 |
+
if '/' in dataset_name:
|
79 |
+
dataset, config = dataset_name.split('/', 1)
|
80 |
+
dataset = load_dataset(dataset, config, split='train[:1%]', use_auth_token=True)
|
81 |
+
else:
|
82 |
+
dataset = load_dataset(dataset_name, split='train[:1%]', use_auth_token=True)
|
83 |
logging.info("Dataset loaded successfully for classification task.")
|
84 |
# Assuming the dataset has 'text' and 'label' columns
|
85 |
def tokenize_function(examples):
|
|
|
87 |
else:
|
88 |
raise ValueError("Unsupported task type")
|
89 |
|
90 |
+
# Shuffle and select a subset
|
91 |
+
tokenized_datasets = dataset.shuffle(seed=42).select(range(500)).map(tokenize_function, batched=True)
|
92 |
logging.info("Dataset tokenization complete.")
|
93 |
return tokenized_datasets
|
94 |
except Exception as e:
|
|
|
147 |
|
148 |
# Initialize Hugging Face API
|
149 |
api = HfApi()
|
150 |
+
|
151 |
+
# Retrieve the Hugging Face API token from environment variables
|
152 |
+
hf_token = os.getenv("HF_API_TOKEN")
|
153 |
if not hf_token:
|
154 |
+
logging.error("HF_API_TOKEN environment variable not set.")
|
155 |
+
raise ValueError("HF_API_TOKEN environment variable not set.")
|
156 |
+
|
157 |
+
# Perform login using the API token
|
158 |
try:
|
159 |
login(token=hf_token)
|
160 |
logging.info("Successfully logged in to Hugging Face Hub.")
|
161 |
except Exception as e:
|
162 |
logging.error(f"Failed to log in to Hugging Face Hub: {str(e)}")
|
163 |
raise e
|
164 |
+
|
165 |
+
# Initialize tokenizer
|
166 |
try:
|
167 |
logging.info("Initializing tokenizer...")
|
168 |
if args.task == "generation":
|