Spaces:
Sleeping
Sleeping
Update train_model.py
Browse files- train_model.py +48 -23
train_model.py
CHANGED
@@ -12,12 +12,14 @@ from transformers import (
|
|
12 |
DataCollatorForLanguageModeling,
|
13 |
DataCollatorWithPadding,
|
14 |
)
|
15 |
-
from datasets import load_dataset
|
16 |
import torch
|
17 |
import os
|
18 |
from huggingface_hub import login, HfApi, HfFolder
|
19 |
import logging
|
20 |
|
|
|
|
|
21 |
def setup_logging(log_file_path):
|
22 |
"""
|
23 |
Sets up logging to both console and a file.
|
@@ -65,21 +67,21 @@ def load_and_prepare_dataset(task, dataset_name, tokenizer, sequence_length):
|
|
65 |
logging.info(f"Loading dataset '{dataset_name}' for task '{task}'...")
|
66 |
try:
|
67 |
if task == "generation":
|
68 |
-
# Check if dataset_name includes
|
69 |
if '/' in dataset_name:
|
70 |
dataset, config = dataset_name.split('/', 1)
|
71 |
-
dataset = load_dataset("Salesforce/wikitext", "wikitext-103-raw-v1", split='train
|
72 |
else:
|
73 |
-
dataset = load_dataset("Salesforce/wikitext", "wikitext-103-raw-v1", split='train
|
74 |
logging.info("Dataset loaded successfully for generation task.")
|
75 |
def tokenize_function(examples):
|
76 |
return tokenizer(examples['text'], truncation=True, max_length=sequence_length)
|
77 |
elif task == "classification":
|
78 |
if '/' in dataset_name:
|
79 |
dataset, config = dataset_name.split('/', 1)
|
80 |
-
dataset = load_dataset(
|
81 |
else:
|
82 |
-
dataset = load_dataset(
|
83 |
logging.info("Dataset loaded successfully for classification task.")
|
84 |
# Assuming the dataset has 'text' and 'label' columns
|
85 |
def tokenize_function(examples):
|
@@ -136,6 +138,12 @@ def initialize_model(task, model_name, vocab_size, sequence_length, hidden_size,
|
|
136 |
logging.error(f"Error initializing model: {str(e)}")
|
137 |
raise e
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
def main():
|
140 |
# Parse arguments
|
141 |
args = parse_arguments()
|
@@ -172,6 +180,31 @@ def main():
|
|
172 |
else:
|
173 |
raise ValueError("Unsupported task type")
|
174 |
logging.info("Tokenizer initialized successfully.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
except Exception as e:
|
176 |
logging.error(f"Error initializing tokenizer: {str(e)}")
|
177 |
raise e
|
@@ -188,20 +221,8 @@ def main():
|
|
188 |
logging.error("Failed to load and prepare dataset.")
|
189 |
raise e
|
190 |
|
191 |
-
# Initialize model
|
192 |
-
|
193 |
-
model = initialize_model(
|
194 |
-
task=args.task,
|
195 |
-
model_name=args.model_name,
|
196 |
-
vocab_size=args.vocab_size,
|
197 |
-
sequence_length=args.sequence_length,
|
198 |
-
hidden_size=args.hidden_size,
|
199 |
-
num_layers=args.num_layers,
|
200 |
-
attention_heads=args.attention_heads
|
201 |
-
)
|
202 |
-
except Exception as e:
|
203 |
-
logging.error("Failed to initialize model.")
|
204 |
-
raise e
|
205 |
|
206 |
# Define data collator
|
207 |
if args.task == "generation":
|
@@ -223,7 +244,8 @@ def main():
|
|
223 |
logging_steps=500,
|
224 |
learning_rate=5e-4,
|
225 |
remove_unused_columns=False,
|
226 |
-
push_to_hub=False # We'll handle pushing manually
|
|
|
227 |
)
|
228 |
elif args.task == "classification":
|
229 |
training_args = TrainingArguments(
|
@@ -236,18 +258,20 @@ def main():
|
|
236 |
logging_steps=500,
|
237 |
learning_rate=5e-5,
|
238 |
remove_unused_columns=False,
|
239 |
-
push_to_hub=False # We'll handle pushing manually
|
|
|
240 |
)
|
241 |
else:
|
242 |
logging.error("Unsupported task type for training arguments.")
|
243 |
raise ValueError("Unsupported task type for training arguments.")
|
244 |
|
245 |
-
# Initialize Trainer
|
246 |
trainer = Trainer(
|
247 |
model=model,
|
248 |
args=training_args,
|
249 |
train_dataset=tokenized_datasets,
|
250 |
data_collator=data_collator,
|
|
|
251 |
)
|
252 |
|
253 |
# Start training
|
@@ -293,3 +317,4 @@ if __name__ == "__main__":
|
|
293 |
|
294 |
|
295 |
|
|
|
|
12 |
DataCollatorForLanguageModeling,
|
13 |
DataCollatorWithPadding,
|
14 |
)
|
15 |
+
from datasets import load_dataset, Dataset
|
16 |
import torch
|
17 |
import os
|
18 |
from huggingface_hub import login, HfApi, HfFolder
|
19 |
import logging
|
20 |
|
21 |
+
from torch.optim import AdamW # Import PyTorch's AdamW
|
22 |
+
|
23 |
def setup_logging(log_file_path):
|
24 |
"""
|
25 |
Sets up logging to both console and a file.
|
|
|
67 |
logging.info(f"Loading dataset '{dataset_name}' for task '{task}'...")
|
68 |
try:
|
69 |
if task == "generation":
|
70 |
+
# Check if dataset_name includes a configuration
|
71 |
if '/' in dataset_name:
|
72 |
dataset, config = dataset_name.split('/', 1)
|
73 |
+
dataset = load_dataset("Salesforce/wikitext", "wikitext-103-raw-v1", split='train')
|
74 |
else:
|
75 |
+
dataset = load_dataset("Salesforce/wikitext", "wikitext-103-raw-v1", split='train')
|
76 |
logging.info("Dataset loaded successfully for generation task.")
|
77 |
def tokenize_function(examples):
|
78 |
return tokenizer(examples['text'], truncation=True, max_length=sequence_length)
|
79 |
elif task == "classification":
|
80 |
if '/' in dataset_name:
|
81 |
dataset, config = dataset_name.split('/', 1)
|
82 |
+
dataset = load_dataset(dataset, config, split='train', use_auth_token=True)
|
83 |
else:
|
84 |
+
dataset = load_dataset(dataset_name, split='train', use_auth_token=True)
|
85 |
logging.info("Dataset loaded successfully for classification task.")
|
86 |
# Assuming the dataset has 'text' and 'label' columns
|
87 |
def tokenize_function(examples):
|
|
|
138 |
logging.error(f"Error initializing model: {str(e)}")
|
139 |
raise e
|
140 |
|
141 |
+
def get_optimizer(model, learning_rate):
|
142 |
+
"""
|
143 |
+
Returns the AdamW optimizer from PyTorch.
|
144 |
+
"""
|
145 |
+
return AdamW(model.parameters(), lr=learning_rate)
|
146 |
+
|
147 |
def main():
|
148 |
# Parse arguments
|
149 |
args = parse_arguments()
|
|
|
180 |
else:
|
181 |
raise ValueError("Unsupported task type")
|
182 |
logging.info("Tokenizer initialized successfully.")
|
183 |
+
|
184 |
+
# Set pad_token to eos_token if not already set
|
185 |
+
if tokenizer.pad_token is None:
|
186 |
+
logging.info("Setting pad_token to eos_token.")
|
187 |
+
tokenizer.pad_token = tokenizer.eos_token
|
188 |
+
model = initialize_model(
|
189 |
+
task=args.task,
|
190 |
+
model_name=args.model_name,
|
191 |
+
vocab_size=args.vocab_size,
|
192 |
+
sequence_length=args.sequence_length,
|
193 |
+
hidden_size=args.hidden_size,
|
194 |
+
num_layers=args.num_layers,
|
195 |
+
attention_heads=args.attention_heads
|
196 |
+
)
|
197 |
+
model.resize_token_embeddings(len(tokenizer))
|
198 |
+
else:
|
199 |
+
model = initialize_model(
|
200 |
+
task=args.task,
|
201 |
+
model_name=args.model_name,
|
202 |
+
vocab_size=args.vocab_size,
|
203 |
+
sequence_length=args.sequence_length,
|
204 |
+
hidden_size=args.hidden_size,
|
205 |
+
num_layers=args.num_layers,
|
206 |
+
attention_heads=args.attention_heads
|
207 |
+
)
|
208 |
except Exception as e:
|
209 |
logging.error(f"Error initializing tokenizer: {str(e)}")
|
210 |
raise e
|
|
|
221 |
logging.error("Failed to load and prepare dataset.")
|
222 |
raise e
|
223 |
|
224 |
+
# Initialize model (Already initialized above)
|
225 |
+
# model = initialize_model(...) # Moved above to handle pad_token
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
# Define data collator
|
228 |
if args.task == "generation":
|
|
|
244 |
logging_steps=500,
|
245 |
learning_rate=5e-4,
|
246 |
remove_unused_columns=False,
|
247 |
+
push_to_hub=False, # We'll handle pushing manually
|
248 |
+
no_deprecation_warning=True # Suppress FutureWarning
|
249 |
)
|
250 |
elif args.task == "classification":
|
251 |
training_args = TrainingArguments(
|
|
|
258 |
logging_steps=500,
|
259 |
learning_rate=5e-5,
|
260 |
remove_unused_columns=False,
|
261 |
+
push_to_hub=False, # We'll handle pushing manually
|
262 |
+
no_deprecation_warning=True # Suppress FutureWarning
|
263 |
)
|
264 |
else:
|
265 |
logging.error("Unsupported task type for training arguments.")
|
266 |
raise ValueError("Unsupported task type for training arguments.")
|
267 |
|
268 |
+
# Initialize Trainer with PyTorch's AdamW optimizer
|
269 |
trainer = Trainer(
|
270 |
model=model,
|
271 |
args=training_args,
|
272 |
train_dataset=tokenized_datasets,
|
273 |
data_collator=data_collator,
|
274 |
+
optimizers=(get_optimizer(model, training_args.learning_rate), None) # None for scheduler
|
275 |
)
|
276 |
|
277 |
# Start training
|
|
|
317 |
|
318 |
|
319 |
|
320 |
+
|