Spaces:
Sleeping
Sleeping
Update train_model.py
Browse files- train_model.py +31 -10
train_model.py
CHANGED
@@ -67,8 +67,20 @@ def load_and_prepare_dataset(task, dataset_name, tokenizer, sequence_length):
|
|
67 |
logging.info("Dataset loaded successfully.")
|
68 |
|
69 |
def tokenize_function(examples):
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
# Tokenize the dataset using the modified tokenize_function
|
74 |
tokenized_datasets = dataset.shuffle(seed=42).select(range(500)).map(tokenize_function, batched=True)
|
@@ -182,7 +194,6 @@ def main():
|
|
182 |
logging.error(f"Error initializing tokenizer or model: {str(e)}")
|
183 |
raise e
|
184 |
|
185 |
-
# Load and prepare dataset
|
186 |
# Load and prepare dataset
|
187 |
try:
|
188 |
tokenized_datasets = load_and_prepare_dataset(
|
@@ -194,26 +205,38 @@ def main():
|
|
194 |
except Exception as e:
|
195 |
logging.error("Failed to load and prepare dataset.")
|
196 |
raise e
|
197 |
-
|
198 |
# Define data collator
|
199 |
if args.task == "generation":
|
200 |
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
201 |
elif args.task == "classification":
|
202 |
-
data_collator = DataCollatorWithPadding(tokenizer=tokenizer
|
203 |
else:
|
204 |
logging.error("Unsupported task type for data collator.")
|
205 |
raise ValueError("Unsupported task type for data collator.")
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
# Initialize Trainer with the data collator
|
208 |
trainer = Trainer(
|
209 |
model=model,
|
210 |
args=training_args,
|
211 |
train_dataset=tokenized_datasets,
|
212 |
data_collator=data_collator,
|
213 |
-
optimizers=(get_optimizer(model, training_args.learning_rate), None)
|
214 |
)
|
215 |
|
216 |
-
|
217 |
# Start training
|
218 |
logging.info("Starting training...")
|
219 |
try:
|
@@ -253,5 +276,3 @@ def main():
|
|
253 |
|
254 |
if __name__ == "__main__":
|
255 |
main()
|
256 |
-
|
257 |
-
|
|
|
67 |
logging.info("Dataset loaded successfully.")
|
68 |
|
69 |
def tokenize_function(examples):
|
70 |
+
try:
|
71 |
+
# Tokenize with truncation, defer padding to DataCollator
|
72 |
+
tokens = tokenizer(
|
73 |
+
examples['text'],
|
74 |
+
truncation=True,
|
75 |
+
max_length=sequence_length, # Set maximum length
|
76 |
+
padding=False, # Padding will be handled by the DataCollatorWithPadding
|
77 |
+
return_tensors=None # Let the DataCollator handle tensor creation
|
78 |
+
)
|
79 |
+
return tokens
|
80 |
+
except Exception as e:
|
81 |
+
logging.error(f"Error during tokenization: {e}")
|
82 |
+
logging.error(f"Example data: {examples}")
|
83 |
+
raise e
|
84 |
|
85 |
# Tokenize the dataset using the modified tokenize_function
|
86 |
tokenized_datasets = dataset.shuffle(seed=42).select(range(500)).map(tokenize_function, batched=True)
|
|
|
194 |
logging.error(f"Error initializing tokenizer or model: {str(e)}")
|
195 |
raise e
|
196 |
|
|
|
197 |
# Load and prepare dataset
|
198 |
try:
|
199 |
tokenized_datasets = load_and_prepare_dataset(
|
|
|
205 |
except Exception as e:
|
206 |
logging.error("Failed to load and prepare dataset.")
|
207 |
raise e
|
208 |
+
|
209 |
# Define data collator
|
210 |
if args.task == "generation":
|
211 |
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
212 |
elif args.task == "classification":
|
213 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) # Dynamic padding during batch creation
|
214 |
else:
|
215 |
logging.error("Unsupported task type for data collator.")
|
216 |
raise ValueError("Unsupported task type for data collator.")
|
217 |
+
|
218 |
+
# Define training arguments
|
219 |
+
training_args = TrainingArguments(
|
220 |
+
output_dir=f"./models/{args.model_name}",
|
221 |
+
num_train_epochs=3,
|
222 |
+
per_device_train_batch_size=8 if args.task == "generation" else 16,
|
223 |
+
save_steps=5000,
|
224 |
+
save_total_limit=2,
|
225 |
+
logging_steps=500,
|
226 |
+
learning_rate=5e-4 if args.task == "generation" else 5e-5,
|
227 |
+
remove_unused_columns=False,
|
228 |
+
push_to_hub=False
|
229 |
+
)
|
230 |
+
|
231 |
# Initialize Trainer with the data collator
|
232 |
trainer = Trainer(
|
233 |
model=model,
|
234 |
args=training_args,
|
235 |
train_dataset=tokenized_datasets,
|
236 |
data_collator=data_collator,
|
237 |
+
optimizers=(get_optimizer(model, training_args.learning_rate), None)
|
238 |
)
|
239 |
|
|
|
240 |
# Start training
|
241 |
logging.info("Starting training...")
|
242 |
try:
|
|
|
276 |
|
277 |
if __name__ == "__main__":
|
278 |
main()
|
|
|
|