Spaces:
Sleeping
Sleeping
File size: 37,107 Bytes
30d7ae2 19e1ed6 0cfd18e 26c97a9 0cfd18e d559082 0cfd18e 19e1ed6 0cfd18e 139f757 192b89f 0cfd18e fdebc65 0cfd18e 0591b3c 0586d21 0591b3c 0586d21 0591b3c 0586d21 0591b3c 0586d21 0591b3c af0160e 0591b3c 0586d21 0591b3c 0586d21 0591b3c af0160e 0591b3c 0586d21 0591b3c 0cfd18e 0591b3c 0cfd18e 0591b3c 0cfd18e 0591b3c 0cfd18e 0591b3c 0cfd18e 14bbc11 0cfd18e 26c97a9 30d7ae2 0591b3c fdebc65 0591b3c 30d7ae2 139f757 d559082 e302645 fd09ea6 139f757 fd09ea6 fdebc65 fd09ea6 d559082 fd09ea6 139f757 fdebc65 139f757 1c688b1 139f757 30d7ae2 1c688b1 fdebc65 1c688b1 fdebc65 1c688b1 30d7ae2 1c688b1 d559082 fdebc65 d559082 0cfd18e 16c5c11 fdebc65 fd09ea6 fdebc65 fd09ea6 16c5c11 1c688b1 d559082 30d7ae2 16c5c11 154b3c1 16c5c11 30d7ae2 fdebc65 0591b3c 154b3c1 fdebc65 0591b3c 154b3c1 0591b3c 154b3c1 0591b3c 154b3c1 0591b3c 154b3c1 0591b3c 154b3c1 0591b3c 154b3c1 0591b3c 154b3c1 0591b3c 154b3c1 0591b3c 154b3c1 0591b3c e302645 0591b3c e302645 0591b3c e302645 0591b3c e302645 0591b3c 154b3c1 e302645 154b3c1 e302645 fdebc65 e302645 154b3c1 d559082 0591b3c d559082 0591b3c 154b3c1 d559082 154b3c1 0591b3c 154b3c1 d559082 30d7ae2 19ba848 fdebc65 26c97a9 19ba848 fd09ea6 30d7ae2 19ba848 fdebc65 30d7ae2 19ba848 fd09ea6 19ba848 fd09ea6 192b89f 19ba848 192b89f fd09ea6 192b89f 19ba848 14bbc11 19ba848 14bbc11 192b89f 19ba848 14bbc11 192b89f 14bbc11 192b89f 14bbc11 192b89f 14bbc11 192b89f 14bbc11 192b89f 14bbc11 192b89f 14bbc11 192b89f 14bbc11 192b89f 14bbc11 192b89f 19ba848 fdebc65 26c97a9 fd09ea6 30d7ae2 f38c379 1c688b1 f38c379 0591b3c 30d7ae2 f38c379 0591b3c f38c379 1c688b1 0591b3c 1c688b1 f38c379 30d7ae2 0591b3c fdebc65 30d7ae2 1c688b1 fdebc65 30d7ae2 fd09ea6 1c688b1 fd09ea6 30d7ae2 1c688b1 30d7ae2 fd09ea6 1c688b1 30d7ae2 1c688b1 30d7ae2 1c688b1 30d7ae2 1c688b1 30d7ae2 1c688b1 30d7ae2 1c688b1 30d7ae2 0591b3c 30d7ae2 fdebc65 0591b3c 1c688b1 30d7ae2 0591b3c 30d7ae2 0cfd18e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 |
import os
import torch
import glob
import gc
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling,
AutoTokenizer,
LlamaConfig,
AutoConfig
)
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
from datasets import Dataset
from huggingface_hub import snapshot_download
from tqdm import tqdm
import gradio as gr
import math
from accelerate import Accelerator
import subprocess
import sys
import json
import shutil
import traceback
# --- Configuration ---
YOUR_HF_USERNAME = "Twelve2five"
MODEL_REPO_NAME = "llama-3-8b-rvq-resized"
DATASET_REPO_NAME = "podcast-dialogue-rvq-pairs-3items"
hf_model_repo_id = f"{YOUR_HF_USERNAME}/{MODEL_REPO_NAME}"
hf_dataset_repo_id = f"{YOUR_HF_USERNAME}/{DATASET_REPO_NAME}"
# Output directories
OUTPUT_TRAINING_DIR = "./llama3-8b-rvq-qlora-finetuned-run"
LOGGING_DIR = "./llama3-8b-rvq-qlora-logs-run"
local_download_path = "./downloaded_dataset_files"
# Training parameters
NUM_EPOCHS = 1
BATCH_SIZE_PER_DEVICE = 1
GRAD_ACCUMULATION_STEPS = 64
LEARNING_RATE = 1e-4
WEIGHT_DECAY = 0.01
WARMUP_RATIO = 0.03
LR_SCHEDULER = "cosine"
OPTIMIZER = "paged_adamw_8bit"
MAX_SEQ_LENGTH = 256
MICRO_BATCH_SIZE = 1
# Multi-GPU configuration
accelerator = Accelerator()
# Configure environment for multi-GPU
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32"
# Print GPU information
print(f"Available GPUs: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)} with {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB")
def seq2seq_causal_collator(features):
"""
Collator that concatenates context (input_ids) and target (labels)
for Causal LM sequence-to-sequence training.
Masks the loss for the context part of the sequence.
Pads sequences to the maximum length in the batch.
"""
batch = {}
concatenated_input_ids = []
concatenated_labels = []
max_len = 0
# --- First pass: Concatenate, create masked labels, find max length ---
for feature in features:
# Dataset transform should provide tensors here
input_ids = feature['input_ids']
labels = feature['labels']
# Ensure tensors are 1D (handle potential extra dims if any)
if input_ids.dim() > 1: input_ids = input_ids.squeeze()
if labels.dim() > 1: labels = labels.squeeze()
context_len = input_ids.shape[0]
target_len = labels.shape[0]
# Concatenate context and target for input
combined_ids = torch.cat([input_ids, labels], dim=0)
concatenated_input_ids.append(combined_ids)
# Create labels: -100 for context, actual labels for target
masked_labels = torch.cat([
torch.full((context_len,), -100, dtype=torch.long, device=input_ids.device),
labels
], dim=0)
concatenated_labels.append(masked_labels)
# Track max length for padding
if combined_ids.shape[0] > max_len:
max_len = combined_ids.shape[0]
# --- Second pass: Pad to max length ---
padded_input_ids = []
padded_labels = []
input_pad_token_id = 0
label_pad_token_id = -100
for i in range(len(features)):
ids = concatenated_input_ids[i]
lbls = concatenated_labels[i]
padding_len = max_len - ids.shape[0]
# Pad on the right side
padded_input_ids.append(torch.nn.functional.pad(
ids, (0, padding_len), value=input_pad_token_id
))
padded_labels.append(torch.nn.functional.pad(
lbls, (0, padding_len), value=label_pad_token_id
))
# --- Stack and create final batch ---
batch['input_ids'] = torch.stack(padded_input_ids)
batch['labels'] = torch.stack(padded_labels)
# Create attention mask (1 for real tokens, 0 for padding)
batch['attention_mask'] = batch['input_ids'].ne(input_pad_token_id).long()
return batch
def prepare_for_dataset(batch):
output = {'input_ids': [], 'labels': []}
for item in batch:
output['input_ids'].append(item['input_ids'].cpu().tolist())
output['labels'].append(item['labels'].cpu().tolist())
return output
def load_model():
print(f"Loading base model architecture from: {hf_model_repo_id}")
# Get information about GPU with most free memory
gpu_id = 0 # Default to first GPU
max_free_memory = 0
for i in range(torch.cuda.device_count()):
free_memory = torch.cuda.get_device_properties(i).total_memory - torch.cuda.memory_allocated(i)
if free_memory > max_free_memory:
max_free_memory = free_memory
gpu_id = i
print(f"Loading model on GPU {gpu_id} with {max_free_memory / 1e9:.2f}GB free memory")
# Configure quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# Load the model
try:
# First update transformers to make sure we have latest version
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "transformers"])
# Now try loading with explicit config class to avoid auto-detection issues
from transformers import LlamaConfig
# Load config first
config = LlamaConfig.from_pretrained(
hf_model_repo_id,
trust_remote_code=True
)
# Then load model with explicit config
model = AutoModelForCausalLM.from_pretrained(
hf_model_repo_id,
config=config,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
log.append(f"Loaded model vocab size: {model.config.vocab_size}")
log.append(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
except Exception as e:
error_msg = f"Error loading model from Hub: {e}"
log.append(error_msg)
# Try with a fallback method
try:
log.append("Attempting alternative loading method...")
# Try loading without auto detection
model = AutoModelForCausalLM.from_pretrained(
hf_model_repo_id,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
# Add these to help with the loading
revision="main",
low_cpu_mem_usage=True,
)
log.append("Alternative loading successful!")
log.append(f"Loaded model vocab size: {model.config.vocab_size}")
except Exception as e2:
log.append(f"Alternative loading also failed: {e2}")
return "\n".join(log)
# --- Load Tokenizer (prioritizing Llama 3.2 1B) ---
progress(0.3, desc="Loading tokenizer...")
# Set up token for authentication
token_param = {"token": hf_token} if hf_token and hf_token.strip() else {}
if token_param:
log.append("Using provided Hugging Face token for authentication")
else:
log.append("No token provided, using Space's default authentication")
# Try to load a compatible tokenizer
try:
# First try the actual Llama 3.2 1B tokenizer
tokenizer_repo = "meta-llama/Llama-3.2-1B" # The official 1B model
log.append(f"Attempting to load tokenizer from {tokenizer_repo}...")
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_repo,
padding_side="right",
use_fast=True,
**token_param # Pass token if provided
)
log.append(f"Successfully loaded tokenizer from {tokenizer_repo}")
except Exception as e1:
log.append(f"Couldn't load {tokenizer_repo} tokenizer: {e1}")
# Try the model repo directly (in case it has a tokenizer)
try:
tokenizer = AutoTokenizer.from_pretrained(
hf_model_repo_id, # The RVQ model repo
padding_side="right",
use_fast=True,
**token_param # Pass token if provided
)
log.append(f"Loaded tokenizer from the model repo: {hf_model_repo_id}")
except Exception as e2:
log.append(f"Couldn't load model repo tokenizer: {e2}")
# Continue with our fallbacks (public models don't need token)
try:
# Try TinyLlama (public)
tokenizer = AutoTokenizer.from_pretrained(
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
padding_side="right",
use_fast=True
)
log.append("Loaded TinyLlama tokenizer as fallback")
except Exception as e3:
log.append(f"Couldn't load TinyLlama tokenizer: {e3}")
# Last resort - other public models
try:
tokenizer = AutoTokenizer.from_pretrained(
"microsoft/phi-2", # Public model
padding_side="right"
)
log.append("Loaded Phi-2 tokenizer as last resort")
except Exception as e4:
error_msg = f"Failed to load any compatible tokenizer after multiple attempts: {e4}"
log.append(error_msg)
return "\n".join(log)
# Set pad token if not already set
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token if tokenizer.eos_token is not None else "<pad>"
log.append("Set pad_token to eos_token or <pad>")
log.append(f"Tokenizer loaded with vocab size: {len(tokenizer)}")
log.append(f"Model vocab size: {model.config.vocab_size}")
log.append(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
# Prepare model for k-bit training
model = prepare_model_for_kbit_training(model)
# Define LoRA configuration - adjusted for 1B model
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=8, # Smaller rank for 1B model (vs 16 for larger models)
lora_alpha=16, # Adjusted alpha (vs 32 for larger models)
lora_dropout=0.05,
bias="none",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
)
# Apply LoRA to model
progress(0.4, desc="Applying LoRA to model...")
model_to_train = get_peft_model(model, lora_config)
log.append("LoRA applied to model")
log.append(f"LoRA rank: 8, alpha: 16 (optimized for 1B model)")
model_to_train.print_trainable_parameters()
return model, tokenizer
def load_dataset():
# --- Download the dataset repository files ---
try:
os.makedirs(local_download_path, exist_ok=True)
downloaded_repo_root = snapshot_download(
repo_id=hf_dataset_repo_id,
repo_type="dataset",
local_dir=local_download_path,
local_dir_use_symlinks=False
)
print(f"Dataset repository content downloaded to: {downloaded_repo_root}")
except Exception as e:
print(f"Error downloading dataset: {e}")
return None
# --- Load .pt files into a Hugging Face Dataset object ---
pairs_dir = os.path.join(downloaded_repo_root, "final_rvq_pairs")
all_pair_files = glob.glob(os.path.join(pairs_dir, "*_rvq_pairs.pt"))
if not all_pair_files:
all_pair_files = glob.glob(os.path.join(downloaded_repo_root, "*_rvq_pairs.pt"))
if not all_pair_files:
print("No RVQ pair files found!")
return None
print(f"Found {len(all_pair_files)} RVQ pair files.")
# Load data from .pt files into memory
all_data_pairs = []
for file_path in tqdm(all_pair_files, desc="Loading pair files"):
try:
episode_pairs = torch.load(file_path, map_location='cpu')
all_data_pairs.extend(episode_pairs)
except Exception as e:
print(f"Warning: Could not load file {file_path}: {e}")
if not all_data_pairs:
return None
print(f"Loaded {len(all_data_pairs)} training pairs.")
# Convert to Hugging Face Dataset
chunk_size = 1000
processed_data = {'input_ids': [], 'labels': []}
for i in tqdm(range(0, len(all_data_pairs), chunk_size), desc="Preparing data"):
batch = all_data_pairs[i:i + chunk_size]
prepared_batch = prepare_for_dataset(batch)
processed_data['input_ids'].extend(prepared_batch['input_ids'])
processed_data['labels'].extend(prepared_batch['labels'])
hf_dataset = Dataset.from_dict(processed_data)
# Transform to get tensors back
hf_dataset.set_transform(lambda batch: {
'input_ids': [torch.tensor(ids, dtype=torch.long) for ids in batch['input_ids']],
'labels': [torch.tensor(lbls, dtype=torch.long) for lbls in batch['labels']]
})
# Cleanup
del all_data_pairs
del processed_data
gc.collect()
return hf_dataset
# Memory cleaning function
def clean_memory():
gc.collect()
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
with torch.cuda.device(f'cuda:{i}'):
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
def train_model(
hf_username,
model_repo_name,
dataset_repo_name,
epochs=1,
batch_size=8,
grad_accum_steps=1,
learning_rate=2e-4,
hf_token=None, # New parameter for token
progress=gr.Progress()
):
progress(0, desc="Setting up environment...")
log = []
# Install sentencepiece if it's not already installed
progress(0.02, desc="Installing required dependencies...")
try:
import sentencepiece
log.append("SentencePiece already installed")
except ImportError:
log.append("Installing SentencePiece...")
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "sentencepiece"])
log.append("SentencePiece installed successfully")
except Exception as e:
log.append(f"Error installing SentencePiece: {e}")
# Continue anyway, we'll try other tokenizer approaches if this fails
# Clean up any existing model files to save space
if os.path.exists("./model_files"):
try:
shutil.rmtree("./model_files")
except Exception as e:
log.append(f"Warning: Could not remove existing model files: {e}")
if os.path.exists("./downloaded_dataset_files"):
try:
shutil.rmtree("./downloaded_dataset_files")
except Exception as e:
log.append(f"Warning: Could not remove existing dataset files: {e}")
# Print GPU info - using imported torch, not a local variable
if torch.cuda.is_available():
log.append(f"Available GPUs: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
gpu_name = torch.cuda.get_device_name(i)
gpu_memory = torch.cuda.get_device_properties(i).total_memory / (1024**3)
log.append(f"GPU {i}: {gpu_name} with {gpu_memory:.2f} GB")
# Import required libraries
try:
from datasets import Dataset
from huggingface_hub import snapshot_download
# Don't import torch again, since it's already imported
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig, TrainingArguments, Trainer
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
log.append(f"Transformers version: {transformers.__version__}")
log.append(f"PyTorch version: {torch.__version__}")
except ImportError as e:
log.append(f"Error importing libraries: {e}")
return "\n".join(log)
# --- Configuration ---
progress(0.05, desc="Setting up configuration...")
hf_model_repo_id = f"{hf_username}/{model_repo_name}"
hf_dataset_repo_id = f"{hf_username}/{dataset_repo_name}"
log.append(f"Model repo: {hf_model_repo_id}")
log.append(f"Dataset repo: {hf_dataset_repo_id}")
# Check if running on multiple GPUs
n_gpus = torch.cuda.device_count()
log.append(f"Number of GPUs available: {n_gpus}")
# --- DeepSpeed Configuration ---
# Create DeepSpeed config file
progress(0.1, desc="Setting up DeepSpeed configuration...")
# Create a simpler config since we have plenty of memory on A100
ds_config = {
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 1, # Lower stage is fine for A100-80GB
"contiguous_gradients": True,
"overlap_comm": True
},
"gradient_accumulation_steps": grad_accum_steps,
"gradient_clipping": 1.0,
"train_batch_size": batch_size * grad_accum_steps * max(1, n_gpus)
}
ds_config_path = "ds_config.json"
with open(ds_config_path, "w") as f:
json.dump(ds_config, f, indent=4)
log.append("DeepSpeed configuration created successfully")
# --- Download and Load Model ---
progress(0.15, desc="Downloading model...")
try:
# Download model files
local_model_path = "./model_files"
snapshot_download(
repo_id=hf_model_repo_id,
local_dir=local_model_path,
use_auth_token=False,
resume_download=True
)
log.append(f"Model files downloaded to {local_model_path}")
# Check and fix the model config if needed
config_path = os.path.join(local_model_path, "config.json")
if os.path.exists(config_path):
with open(config_path, 'r') as f:
config_data = json.load(f)
# Fix the rope_scaling configuration
if 'rope_scaling' in config_data:
if not isinstance(config_data['rope_scaling'], dict):
config_data['rope_scaling'] = {"type": "linear", "factor": 2.0}
elif 'rope_type' in config_data['rope_scaling']:
# Convert complex rope_scaling to the simple format expected
rope_factor = config_data['rope_scaling'].get('factor', 2.0)
config_data['rope_scaling'] = {"type": "linear", "factor": rope_factor}
# Write the updated config back
with open(config_path, 'w') as f:
json.dump(config_data, f, indent=2)
log.append("Updated model configuration for rope_scaling")
# Create a bnb configuration for loading the model in 4-bit
progress(0.25, desc="Loading model...")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=False
)
# Load the model with fixed configuration
model = AutoModelForCausalLM.from_pretrained(
local_model_path,
quantization_config=bnb_config,
device_map="auto",
use_cache=False, # Needed for gradient checkpointing
trust_remote_code=True, # Following reference code
torch_dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16,
)
# --- Load Tokenizer (prioritizing Llama 3.2 1B) ---
progress(0.3, desc="Loading tokenizer...")
# Set up token for authentication
token_param = {"token": hf_token} if hf_token and hf_token.strip() else {}
if token_param:
log.append("Using provided Hugging Face token for authentication")
else:
log.append("No token provided, using Space's default authentication")
# Try to load a compatible tokenizer
try:
# First try the actual Llama 3.2 1B tokenizer
tokenizer_repo = "meta-llama/Llama-3.2-1B" # The official 1B model
log.append(f"Attempting to load tokenizer from {tokenizer_repo}...")
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_repo,
padding_side="right",
use_fast=True,
**token_param # Pass token if provided
)
log.append(f"Successfully loaded tokenizer from {tokenizer_repo}")
except Exception as e1:
log.append(f"Couldn't load {tokenizer_repo} tokenizer: {e1}")
# Try the model repo directly (in case it has a tokenizer)
try:
tokenizer = AutoTokenizer.from_pretrained(
hf_model_repo_id, # The RVQ model repo
padding_side="right",
use_fast=True,
**token_param # Pass token if provided
)
log.append(f"Loaded tokenizer from the model repo: {hf_model_repo_id}")
except Exception as e2:
log.append(f"Couldn't load model repo tokenizer: {e2}")
# Continue with our fallbacks (public models don't need token)
try:
# Try TinyLlama (public)
tokenizer = AutoTokenizer.from_pretrained(
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
padding_side="right",
use_fast=True
)
log.append("Loaded TinyLlama tokenizer as fallback")
except Exception as e3:
log.append(f"Couldn't load TinyLlama tokenizer: {e3}")
# Last resort - other public models
try:
tokenizer = AutoTokenizer.from_pretrained(
"microsoft/phi-2", # Public model
padding_side="right"
)
log.append("Loaded Phi-2 tokenizer as last resort")
except Exception as e4:
error_msg = f"Failed to load any compatible tokenizer after multiple attempts: {e4}"
log.append(error_msg)
return "\n".join(log)
# Set pad token if not already set
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token if tokenizer.eos_token is not None else "<pad>"
log.append("Set pad_token to eos_token or <pad>")
log.append(f"Tokenizer loaded with vocab size: {len(tokenizer)}")
log.append(f"Model vocab size: {model.config.vocab_size}")
log.append(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
# --- QLoRA Preparation ---
progress(0.35, desc="Preparing model for k-bit training...")
model = prepare_model_for_kbit_training(model)
log.append("Model prepared for k-bit training")
# Define LoRA configuration - adjusted for 1B model
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=8, # Smaller rank for 1B model (vs 16 for larger models)
lora_alpha=16, # Adjusted alpha (vs 32 for larger models)
lora_dropout=0.05,
bias="none",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
)
# Apply LoRA to model
progress(0.4, desc="Applying LoRA to model...")
model_to_train = get_peft_model(model, lora_config)
log.append("LoRA applied to model")
log.append(f"LoRA rank: 8, alpha: 16 (optimized for 1B model)")
model_to_train.print_trainable_parameters()
# Cleanup to free up memory
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
except Exception as e:
error_msg = f"Error preparing model for training: {str(e)}"
log.append(error_msg)
return "\n".join(log)
# --- Download and Load Dataset ---
progress(0.45, desc="Downloading dataset...")
log.append(f"Downloading dataset from {hf_dataset_repo_id}...")
try:
# Download the dataset files
local_dataset_path = "./downloaded_dataset_files"
# Correctly specify repo_type as "dataset"
snapshot_download(
repo_id=hf_dataset_repo_id,
local_dir=local_dataset_path,
repo_type="dataset", # Important! Specifies this is a dataset repo
token=hf_token if hf_token and hf_token.strip() else None, # Use token for auth
resume_download=True
)
log.append(f"Dataset files downloaded to {local_dataset_path}")
# Check the structure of the downloaded files
log.append("Checking downloaded dataset structure...")
downloaded_files = glob.glob(f"{local_dataset_path}/**/*.pt", recursive=True)
log.append(f"Found {len(downloaded_files)} .pt files in the dataset directory")
# Look for the pairs directory (we know this exists from the log)
pairs_dir = os.path.join(local_dataset_path, "final_rvq_pairs")
log.append(f"Using pairs directory: {pairs_dir}")
pt_files = glob.glob(f"{pairs_dir}/*.pt")
log.append(f"Found {len(pt_files)} .pt files in pairs directory")
# Load the dataset from the files
progress(0.5, desc="Loading pairs from dataset files...")
log.append("Loading dataset pairs...")
try:
# Load a single file first to understand its structure
sample_file = pt_files[0]
sample_data = torch.load(sample_file)
log.append(f"Sample data type: {type(sample_data)}")
# Function to recursively explore the data structure
def explore_data(data, prefix=""):
if isinstance(data, (list, tuple)):
log.append(f"{prefix}List/Tuple with {len(data)} items")
if len(data) > 0:
explore_data(data[0], prefix + " [0]: ")
elif isinstance(data, dict):
log.append(f"{prefix}Dictionary with keys: {list(data.keys())}")
for key in list(data.keys())[:2]: # Look at first 2 keys
explore_data(data[key], prefix + f" ['{key}']: ")
elif isinstance(data, torch.Tensor):
log.append(f"{prefix}Tensor with shape {data.shape} and dtype {data.dtype}")
else:
log.append(f"{prefix}Other type: {type(data)}")
# Explore the sample data
explore_data(sample_data, "Sample data: ")
# Function to extract tensor data from complex structures
def extract_tensor_data(data):
if isinstance(data, torch.Tensor):
return data
elif isinstance(data, (list, tuple)) and len(data) > 0:
if all(isinstance(item, (int, float)) for item in data):
return torch.tensor(data)
# For lists of tensors/complex structures, use the first item
return extract_tensor_data(data[0])
elif isinstance(data, dict):
# Try common keys for input data
for key in ['input_ids', 'prompt', 'source', 'inputs', 'data']:
if key in data:
return extract_tensor_data(data[key])
# If none found, use the first key
if len(data) > 0:
return extract_tensor_data(next(iter(data.values())))
return None
# Process all files
input_ids_list = []
labels_list = []
# Capture any errors for later analysis
file_errors = []
for i, pt_file in enumerate(tqdm(pt_files, desc="Loading .pt files")):
try:
data = torch.load(pt_file)
if isinstance(data, (list, tuple)) and len(data) >= 2:
# Standard format: list/tuple with [input, label]
input_tensor = extract_tensor_data(data[0])
label_tensor = extract_tensor_data(data[1])
if input_tensor is not None and label_tensor is not None:
input_ids_list.append(input_tensor)
labels_list.append(label_tensor)
else:
file_errors.append(f"Could not extract tensors from {pt_file}")
else:
log.append(f"File {pt_file} has unexpected format. Skipping.")
file_errors.append(f"Unexpected format in {pt_file}: {type(data)}")
except Exception as e:
file_errors.append(f"Error processing file {pt_file}: {str(e)}")
# Log errors if any
if file_errors:
log.append(f"Encountered {len(file_errors)} errors during file processing:")
for i, error in enumerate(file_errors[:5]): # Log first 5 errors
log.append(f" Error {i+1}: {error}")
if len(file_errors) > 5:
log.append(f" ...and {len(file_errors) - 5} more errors")
log.append(f"Successfully processed {len(input_ids_list)} input/label pairs")
# Verify all tensors are valid
valid_pairs = []
for i, (inputs, labels) in enumerate(zip(input_ids_list, labels_list)):
# Perform safety checks on tensors
if not isinstance(inputs, torch.Tensor) or not isinstance(labels, torch.Tensor):
log.append(f"Pair {i}: Invalid tensor types - skipping")
continue
# Ensure tensors contain integers
try:
inputs = inputs.long()
labels = labels.long()
# Convert to lists and add to valid pairs
valid_pairs.append((inputs.tolist(), labels.tolist()))
# Log some diagnostics for the first few pairs
if i < 3:
log.append(f"Pair {i}: Input shape: {inputs.shape}, Label shape: {labels.shape}")
except Exception as e:
log.append(f"Error converting tensors for pair {i}: {str(e)}")
# Create the dataset
log.append(f"Creating dataset from {len(valid_pairs)} valid pairs...")
processed_inputs = [pair[0] for pair in valid_pairs]
processed_labels = [pair[1] for pair in valid_pairs]
dataset = Dataset.from_dict({
"input_ids": processed_inputs,
"labels": processed_labels
})
# Split into training and validation
train_test_split = dataset.train_test_split(test_size=0.05)
train_dataset = train_test_split["train"]
val_dataset = train_test_split["test"]
log.append(f"Created dataset with {len(train_dataset)} training examples and {len(val_dataset)} validation examples")
except Exception as e:
import traceback
error_msg = f"Error processing dataset: {str(e)}\n{traceback.format_exc()}"
log.append(error_msg)
return "\n".join(log)
except Exception as e:
error_msg = f"Error loading dataset: {str(e)}"
log.append(error_msg)
return "\n".join(log)
# --- Training Arguments ---
progress(0.75, desc="Setting up training arguments...")
output_dir = f"./results_{model_repo_name}"
os.makedirs(output_dir, exist_ok=True)
# For 1B model on A100, we can increase batch size and reduce gradient accumulation
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=float(epochs),
per_device_train_batch_size=8, # Larger batch size for 1B model
gradient_accumulation_steps=1, # Reduced for 1B model
learning_rate=learning_rate,
weight_decay=0.01,
logging_dir=f"{output_dir}/logs",
logging_steps=10,
save_steps=50,
save_total_limit=3,
remove_unused_columns=False,
push_to_hub=False,
disable_tqdm=False,
warmup_ratio=0.03,
lr_scheduler_type="cosine",
report_to="tensorboard",
bf16=True if torch.cuda.is_bf16_supported() else False,
fp16=False, # Using BF16 instead
gradient_checkpointing=True, # Still useful for efficiency
gradient_checkpointing_kwargs={'use_reentrant': False},
ddp_find_unused_parameters=False,
deepspeed=ds_config_path if n_gpus > 1 else None, # Only use DeepSpeed for multi-GPU
)
# --- Initialize Trainer ---
progress(0.8, desc="Initializing trainer...")
trainer = Trainer(
model=model_to_train,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator,
)
log.append("Trainer initialized for training.")
# --- Start Training ---
# Clear cache before starting
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
try:
progress(0.85, desc="Starting training...")
log.append("Starting training...")
train_result = trainer.train()
progress(0.95, desc="Saving model...")
# Save final model (adapter weights) and training state
final_save_path = os.path.join(training_args.output_dir, "final_checkpoint")
log.append(f"Saving final model checkpoint to {final_save_path}...")
trainer.save_model(final_save_path)
trainer.save_state()
# Log metrics
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
for key, value in metrics.items():
log.append(f"{key}: {value}")
except Exception as e:
error_msg = f"An error occurred during training: {e}"
log.append(error_msg)
return "\n".join(log)
progress(1.0, desc="Training complete!")
log.append("Training process complete.")
return "\n".join(log)
# Define the Gradio interface
def create_interface():
with gr.Blocks(title="Llama 3.2 1B RVQ Fine-tuning") as demo:
gr.Markdown("# Llama 3.2 1B RVQ LoRA Fine-tuning")
gr.Markdown("Fine-tune a Llama 3.2 1B model with RVQ token embeddings using LoRA")
with gr.Row():
with gr.Column():
hf_username = gr.Textbox(label="HuggingFace Username", value="Twelve2five")
model_repo = gr.Textbox(label="Model Repository Name", value="llama-3.2-1b-rvq")
dataset_repo = gr.Textbox(label="Dataset Repository Name", value="podcast-dialogue-rvq-pairs-3items")
hf_token = gr.Textbox(
label="Hugging Face Token (Optional)",
placeholder="Enter your HF token to access gated models",
type="password"
)
with gr.Column():
epochs = gr.Number(label="Number of Epochs", value=3, minimum=1, maximum=10)
batch_size = gr.Number(label="Batch Size per Device", value=8, minimum=1, maximum=16)
grad_accum = gr.Number(label="Gradient Accumulation Steps", value=1, minimum=1, maximum=16)
lr = gr.Number(label="Learning Rate", value=2e-4)
start_btn = gr.Button("Start Training")
output = gr.Textbox(label="Training Log", lines=20)
start_btn.click(
fn=train_model,
inputs=[hf_username, model_repo, dataset_repo, epochs, batch_size, grad_accum, lr, hf_token],
outputs=output
)
return demo
# Create and launch the interface
demo = create_interface()
if __name__ == "__main__":
demo.launch() |