Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,23 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
-
import
|
4 |
-
import gc
|
5 |
-
from transformers import (
|
6 |
-
AutoModelForCausalLM,
|
7 |
-
AutoTokenizer,
|
8 |
-
BitsAndBytesConfig,
|
9 |
-
TrainingArguments,
|
10 |
-
Trainer,
|
11 |
-
DataCollatorForLanguageModeling,
|
12 |
-
AutoTokenizer
|
13 |
-
)
|
14 |
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
|
|
|
|
|
15 |
from datasets import Dataset
|
16 |
from huggingface_hub import snapshot_download
|
|
|
17 |
from tqdm import tqdm
|
18 |
-
import gradio as gr
|
19 |
-
import math
|
20 |
-
from accelerate import Accelerator
|
21 |
|
22 |
# --- Configuration ---
|
23 |
YOUR_HF_USERNAME = "Twelve2five"
|
@@ -27,75 +27,155 @@ DATASET_REPO_NAME = "podcast-dialogue-rvq-pairs-3items"
|
|
27 |
hf_model_repo_id = f"{YOUR_HF_USERNAME}/{MODEL_REPO_NAME}"
|
28 |
hf_dataset_repo_id = f"{YOUR_HF_USERNAME}/{DATASET_REPO_NAME}"
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
local_download_path = "./downloaded_dataset_files"
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32"
|
52 |
|
53 |
-
#
|
54 |
-
|
55 |
-
for
|
56 |
-
|
|
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
def seq2seq_causal_collator(features):
|
59 |
-
"""
|
60 |
-
Collator that concatenates context (input_ids) and target (labels)
|
61 |
-
for Causal LM sequence-to-sequence training.
|
62 |
-
Masks the loss for the context part of the sequence.
|
63 |
-
Pads sequences to the maximum length in the batch.
|
64 |
-
"""
|
65 |
batch = {}
|
66 |
concatenated_input_ids = []
|
67 |
concatenated_labels = []
|
68 |
max_len = 0
|
69 |
|
70 |
-
#
|
71 |
for feature in features:
|
72 |
-
# Dataset transform should provide tensors here
|
73 |
input_ids = feature['input_ids']
|
74 |
labels = feature['labels']
|
75 |
|
76 |
-
# Ensure tensors are 1D (handle potential extra dims if any)
|
77 |
if input_ids.dim() > 1: input_ids = input_ids.squeeze()
|
78 |
if labels.dim() > 1: labels = labels.squeeze()
|
79 |
|
80 |
context_len = input_ids.shape[0]
|
81 |
target_len = labels.shape[0]
|
82 |
|
83 |
-
# Concatenate context and target for input
|
84 |
combined_ids = torch.cat([input_ids, labels], dim=0)
|
85 |
concatenated_input_ids.append(combined_ids)
|
86 |
|
87 |
-
# Create labels: -100 for context, actual labels for target
|
88 |
masked_labels = torch.cat([
|
89 |
torch.full((context_len,), -100, dtype=torch.long, device=input_ids.device),
|
90 |
labels
|
91 |
], dim=0)
|
92 |
concatenated_labels.append(masked_labels)
|
93 |
|
94 |
-
# Track max length for padding
|
95 |
if combined_ids.shape[0] > max_len:
|
96 |
max_len = combined_ids.shape[0]
|
97 |
|
98 |
-
#
|
99 |
padded_input_ids = []
|
100 |
padded_labels = []
|
101 |
input_pad_token_id = 0
|
@@ -107,7 +187,6 @@ def seq2seq_causal_collator(features):
|
|
107 |
|
108 |
padding_len = max_len - ids.shape[0]
|
109 |
|
110 |
-
# Pad on the right side
|
111 |
padded_input_ids.append(torch.nn.functional.pad(
|
112 |
ids, (0, padding_len), value=input_pad_token_id
|
113 |
))
|
@@ -115,281 +194,159 @@ def seq2seq_causal_collator(features):
|
|
115 |
lbls, (0, padding_len), value=label_pad_token_id
|
116 |
))
|
117 |
|
118 |
-
#
|
119 |
batch['input_ids'] = torch.stack(padded_input_ids)
|
120 |
batch['labels'] = torch.stack(padded_labels)
|
121 |
-
|
122 |
-
# Create attention mask (1 for real tokens, 0 for padding)
|
123 |
batch['attention_mask'] = batch['input_ids'].ne(input_pad_token_id).long()
|
124 |
|
125 |
return batch
|
126 |
|
127 |
-
|
128 |
-
output = {'input_ids': [], 'labels': []}
|
129 |
-
for item in batch:
|
130 |
-
output['input_ids'].append(item['input_ids'].cpu().tolist())
|
131 |
-
output['labels'].append(item['labels'].cpu().tolist())
|
132 |
-
return output
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
# Get information about GPU with most free memory
|
138 |
-
gpu_id = 0 # Default to first GPU
|
139 |
-
max_free_memory = 0
|
140 |
-
|
141 |
-
for i in range(torch.cuda.device_count()):
|
142 |
-
free_memory = torch.cuda.get_device_properties(i).total_memory - torch.cuda.memory_allocated(i)
|
143 |
-
if free_memory > max_free_memory:
|
144 |
-
max_free_memory = free_memory
|
145 |
-
gpu_id = i
|
146 |
-
|
147 |
-
print(f"Loading model on GPU {gpu_id} with {max_free_memory / 1e9:.2f}GB free memory")
|
148 |
-
|
149 |
-
# Configure quantization
|
150 |
-
bnb_config = BitsAndBytesConfig(
|
151 |
-
load_in_4bit=True,
|
152 |
-
bnb_4bit_use_double_quant=True,
|
153 |
-
bnb_4bit_quant_type="nf4",
|
154 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
155 |
-
)
|
156 |
-
|
157 |
-
# Load the model
|
158 |
-
model = AutoModelForCausalLM.from_pretrained(
|
159 |
-
hf_model_repo_id,
|
160 |
-
quantization_config=bnb_config,
|
161 |
-
device_map={"": gpu_id},
|
162 |
-
torch_dtype=torch.bfloat16,
|
163 |
-
)
|
164 |
-
|
165 |
-
print(f"Model loaded on device: cuda:{gpu_id}")
|
166 |
-
|
167 |
-
# Load the official Meta tokenizer for LLaMA 3
|
168 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
169 |
-
"meta-llama/Llama-3-8B", # Use the official Meta tokenizer
|
170 |
-
use_auth_token=os.environ.get("HF_TOKEN", None) # In case it's needed
|
171 |
-
)
|
172 |
-
|
173 |
-
if tokenizer is None:
|
174 |
-
# Fallback to another common foundation model tokenizer
|
175 |
-
print("Falling back to another tokenizer as Meta tokenizer requires auth token")
|
176 |
-
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
177 |
-
|
178 |
-
print(f"Loaded tokenizer vocabulary size: {len(tokenizer)}")
|
179 |
-
|
180 |
-
# Print information about input embeddings
|
181 |
-
print(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
|
182 |
-
|
183 |
-
# Prepare model for k-bit training
|
184 |
-
model = prepare_model_for_kbit_training(model)
|
185 |
-
|
186 |
-
# Define LoRA configuration
|
187 |
-
lora_config = LoraConfig(
|
188 |
-
r=16,
|
189 |
-
lora_alpha=32,
|
190 |
-
target_modules=[
|
191 |
-
"q_proj",
|
192 |
-
"k_proj",
|
193 |
-
"v_proj",
|
194 |
-
"o_proj",
|
195 |
-
"gate_proj",
|
196 |
-
"up_proj",
|
197 |
-
"down_proj",
|
198 |
-
],
|
199 |
-
lora_dropout=0.05,
|
200 |
-
bias="none",
|
201 |
-
task_type=TaskType.CAUSAL_LM
|
202 |
-
)
|
203 |
-
|
204 |
-
# Apply LoRA to model
|
205 |
-
model = get_peft_model(model, lora_config)
|
206 |
-
model.print_trainable_parameters()
|
207 |
-
|
208 |
-
return model, tokenizer # Return both model and tokenizer
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
os.makedirs(local_download_path, exist_ok=True)
|
214 |
-
downloaded_repo_root = snapshot_download(
|
215 |
-
repo_id=hf_dataset_repo_id,
|
216 |
-
repo_type="dataset",
|
217 |
-
local_dir=local_download_path,
|
218 |
-
local_dir_use_symlinks=False
|
219 |
-
)
|
220 |
-
print(f"Dataset repository content downloaded to: {downloaded_repo_root}")
|
221 |
-
except Exception as e:
|
222 |
-
print(f"Error downloading dataset: {e}")
|
223 |
-
return None
|
224 |
-
|
225 |
-
# --- Load .pt files into a Hugging Face Dataset object ---
|
226 |
-
pairs_dir = os.path.join(downloaded_repo_root, "final_rvq_pairs")
|
227 |
-
all_pair_files = glob.glob(os.path.join(pairs_dir, "*_rvq_pairs.pt"))
|
228 |
-
|
229 |
-
if not all_pair_files:
|
230 |
-
all_pair_files = glob.glob(os.path.join(downloaded_repo_root, "*_rvq_pairs.pt"))
|
231 |
-
if not all_pair_files:
|
232 |
-
print("No RVQ pair files found!")
|
233 |
-
return None
|
234 |
-
|
235 |
-
print(f"Found {len(all_pair_files)} RVQ pair files.")
|
236 |
-
|
237 |
-
# Load data from .pt files into memory
|
238 |
-
all_data_pairs = []
|
239 |
-
for file_path in tqdm(all_pair_files, desc="Loading pair files"):
|
240 |
-
try:
|
241 |
-
episode_pairs = torch.load(file_path, map_location='cpu')
|
242 |
-
all_data_pairs.extend(episode_pairs)
|
243 |
-
except Exception as e:
|
244 |
-
print(f"Warning: Could not load file {file_path}: {e}")
|
245 |
-
|
246 |
-
if not all_data_pairs:
|
247 |
-
return None
|
248 |
-
|
249 |
-
print(f"Loaded {len(all_data_pairs)} training pairs.")
|
250 |
-
|
251 |
-
# Convert to Hugging Face Dataset
|
252 |
-
chunk_size = 1000
|
253 |
-
processed_data = {'input_ids': [], 'labels': []}
|
254 |
-
for i in tqdm(range(0, len(all_data_pairs), chunk_size), desc="Preparing data"):
|
255 |
-
batch = all_data_pairs[i:i + chunk_size]
|
256 |
-
prepared_batch = prepare_for_dataset(batch)
|
257 |
-
processed_data['input_ids'].extend(prepared_batch['input_ids'])
|
258 |
-
processed_data['labels'].extend(prepared_batch['labels'])
|
259 |
-
|
260 |
-
hf_dataset = Dataset.from_dict(processed_data)
|
261 |
-
|
262 |
-
# Transform to get tensors back
|
263 |
-
hf_dataset.set_transform(lambda batch: {
|
264 |
-
'input_ids': [torch.tensor(ids, dtype=torch.long) for ids in batch['input_ids']],
|
265 |
-
'labels': [torch.tensor(lbls, dtype=torch.long) for lbls in batch['labels']]
|
266 |
-
})
|
267 |
-
|
268 |
-
# Cleanup
|
269 |
-
del all_data_pairs
|
270 |
-
del processed_data
|
271 |
-
gc.collect()
|
272 |
-
|
273 |
-
return hf_dataset
|
274 |
-
|
275 |
-
# Memory cleaning function
|
276 |
-
def clean_memory():
|
277 |
-
gc.collect()
|
278 |
-
if torch.cuda.is_available():
|
279 |
-
for i in range(torch.cuda.device_count()):
|
280 |
-
with torch.cuda.device(f'cuda:{i}'):
|
281 |
-
torch.cuda.empty_cache()
|
282 |
-
torch.cuda.reset_peak_memory_stats()
|
283 |
-
|
284 |
-
def train_model(progress=gr.Progress()):
|
285 |
-
# Clean memory before starting
|
286 |
-
clean_memory()
|
287 |
-
|
288 |
-
# Load model with optimized memory settings
|
289 |
-
model, tokenizer = load_model()
|
290 |
-
|
291 |
-
# Load and prepare dataset
|
292 |
-
progress(0.1, desc="Loading dataset...")
|
293 |
-
train_dataset = load_dataset()
|
294 |
-
|
295 |
-
# Initialize trainer with debug flags
|
296 |
-
progress(0.2, desc="Initializing trainer...")
|
297 |
-
|
298 |
-
try:
|
299 |
-
# Set up training args with simplified settings
|
300 |
-
training_args = TrainingArguments(
|
301 |
-
output_dir="./results",
|
302 |
-
num_train_epochs=1, # Just 1 epoch for testing
|
303 |
-
per_device_train_batch_size=1, # Minimal batch size
|
304 |
-
gradient_accumulation_steps=4, # Reduce memory pressure
|
305 |
-
warmup_steps=2,
|
306 |
-
logging_steps=1, # Log every step
|
307 |
-
save_steps=10000, # Don't save checkpoints during test
|
308 |
-
learning_rate=2e-4,
|
309 |
-
fp16=False, # Disable mixed precision for stability
|
310 |
-
optim="adamw_torch",
|
311 |
-
report_to="none", # Disable wandb/tensorboard reporting
|
312 |
-
max_steps=3, # Just try 3 steps to see if it works
|
313 |
-
logging_first_step=True, # Force log on first step
|
314 |
-
)
|
315 |
-
|
316 |
-
# Create a simple trainer with the tokenizer
|
317 |
-
trainer = Trainer(
|
318 |
-
model=model,
|
319 |
-
args=training_args,
|
320 |
-
train_dataset=train_dataset,
|
321 |
-
data_collator=DataCollatorForLanguageModeling(
|
322 |
-
tokenizer=tokenizer,
|
323 |
-
mlm=False
|
324 |
-
)
|
325 |
-
)
|
326 |
-
|
327 |
-
# Run training for just 3 steps
|
328 |
-
progress(0.3, desc="Starting training (this may take 5-15 minutes for first step)...")
|
329 |
-
trainer.train()
|
330 |
-
|
331 |
-
progress(0.9, desc="Initial training successful! You can now run full training.")
|
332 |
-
return "Initial training completed successfully! The system is working. You can now adjust parameters for a full training run."
|
333 |
-
|
334 |
-
except Exception as e:
|
335 |
-
error_msg = str(e)
|
336 |
-
print(f"Training error: {error_msg}")
|
337 |
-
|
338 |
-
# Add memory diagnostics to error message
|
339 |
-
mem_info = "\nMemory status at error time:\n"
|
340 |
-
for i in range(torch.cuda.device_count()):
|
341 |
-
mem_info += f"GPU {i}: {torch.cuda.memory_allocated(i) / 1e9:.2f}GB allocated, {torch.cuda.memory_reserved(i) / 1e9:.2f}GB reserved\n"
|
342 |
-
|
343 |
-
return f"An error occurred during training: {error_msg}\n{mem_info}"
|
344 |
-
|
345 |
-
# Create Gradio interface
|
346 |
-
def create_ui():
|
347 |
-
with gr.Blocks() as demo:
|
348 |
-
gr.Markdown("# Fine-tune LLaMA 3 8B with QLoRA")
|
349 |
-
|
350 |
-
with gr.Tab("Training"):
|
351 |
-
train_button = gr.Button("Start Fine-tuning")
|
352 |
-
result_text = gr.Textbox(label="Training Results", interactive=False)
|
353 |
-
|
354 |
-
train_button.click(train_model, outputs=result_text)
|
355 |
-
|
356 |
-
with gr.Tab("About"):
|
357 |
-
gr.Markdown("""
|
358 |
-
## Information
|
359 |
-
This is a Hugging Face Space version of the original Google Colab notebook.
|
360 |
-
|
361 |
-
It fine-tunes a quantized LLaMA 3 8B model using QLoRA on podcast dialogue data.
|
362 |
-
|
363 |
-
### Model
|
364 |
-
- Base Model: {YOUR_HF_USERNAME}/{MODEL_REPO_NAME}
|
365 |
-
- Using 4-bit quantization with LoRA adapters
|
366 |
-
|
367 |
-
### Dataset
|
368 |
-
- Custom dataset: {YOUR_HF_USERNAME}/{DATASET_REPO_NAME}
|
369 |
-
- Contains podcast dialogue pairs processed for training
|
370 |
-
|
371 |
-
### Training Setup
|
372 |
-
- QLoRA fine-tuning
|
373 |
-
- Epochs: {NUM_EPOCHS}
|
374 |
-
- Batch size: {BATCH_SIZE_PER_DEVICE} with {GRAD_ACCUMULATION_STEPS} gradient accumulation steps
|
375 |
-
- Learning rate: {LEARNING_RATE}
|
376 |
-
""".format(
|
377 |
-
YOUR_HF_USERNAME=YOUR_HF_USERNAME,
|
378 |
-
MODEL_REPO_NAME=MODEL_REPO_NAME,
|
379 |
-
DATASET_REPO_NAME=DATASET_REPO_NAME,
|
380 |
-
NUM_EPOCHS=NUM_EPOCHS,
|
381 |
-
BATCH_SIZE_PER_DEVICE=BATCH_SIZE_PER_DEVICE,
|
382 |
-
GRAD_ACCUMULATION_STEPS=GRAD_ACCUMULATION_STEPS,
|
383 |
-
LEARNING_RATE=LEARNING_RATE
|
384 |
-
))
|
385 |
-
|
386 |
-
return demo
|
387 |
|
388 |
-
#
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Script for fine-tuning Llama-3-8B with RVQ tokens on multiple GPUs
|
4 |
+
"""
|
5 |
+
|
6 |
+
# Basic setup and installations
|
7 |
+
!pip install -q -U transformers accelerate bitsandbytes peft torch datasets huggingface_hub deepspeed
|
8 |
+
|
9 |
+
# No need for notebook_login on Hugging Face platform
|
10 |
+
# Authentication is handled automatically
|
11 |
+
|
12 |
import torch
|
13 |
+
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
|
15 |
+
import gc
|
16 |
+
import os
|
17 |
from datasets import Dataset
|
18 |
from huggingface_hub import snapshot_download
|
19 |
+
import glob
|
20 |
from tqdm import tqdm
|
|
|
|
|
|
|
21 |
|
22 |
# --- Configuration ---
|
23 |
YOUR_HF_USERNAME = "Twelve2five"
|
|
|
27 |
hf_model_repo_id = f"{YOUR_HF_USERNAME}/{MODEL_REPO_NAME}"
|
28 |
hf_dataset_repo_id = f"{YOUR_HF_USERNAME}/{DATASET_REPO_NAME}"
|
29 |
|
30 |
+
# Check if running on multiple GPUs
|
31 |
+
n_gpus = torch.cuda.device_count()
|
32 |
+
print(f"Number of GPUs available: {n_gpus}")
|
33 |
+
|
34 |
+
# --- Quantization Configuration ---
|
35 |
+
bnb_config = BitsAndBytesConfig(
|
36 |
+
load_in_4bit=True,
|
37 |
+
bnb_4bit_quant_type="nf4",
|
38 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
39 |
+
bnb_4bit_use_double_quant=True,
|
40 |
+
)
|
41 |
+
|
42 |
+
# --- Load Base Model (with quantization) ---
|
43 |
+
try:
|
44 |
+
# For multi-GPU QLoRA, we'll use device_map="auto" and let DeepSpeed handle distribution later
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
46 |
+
hf_model_repo_id,
|
47 |
+
quantization_config=bnb_config,
|
48 |
+
device_map="auto", # Will be overridden by DeepSpeed
|
49 |
+
trust_remote_code=True
|
50 |
+
)
|
51 |
+
print(f"Loaded model vocab size: {model.config.vocab_size}")
|
52 |
+
print(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
|
53 |
+
except Exception as e:
|
54 |
+
print(f"Error loading model from Hub: {e}")
|
55 |
+
raise SystemExit("Model loading failed.")
|
56 |
+
|
57 |
+
# --- Prepare for K-bit Training & Apply LoRA ---
|
58 |
+
model = prepare_model_for_kbit_training(model)
|
59 |
+
|
60 |
+
lora_config = LoraConfig(
|
61 |
+
task_type=TaskType.CAUSAL_LM,
|
62 |
+
r=16,
|
63 |
+
lora_alpha=32,
|
64 |
+
lora_dropout=0.05,
|
65 |
+
bias="none",
|
66 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
|
67 |
+
)
|
68 |
+
peft_model = get_peft_model(model, lora_config)
|
69 |
+
peft_model.print_trainable_parameters()
|
70 |
+
model_to_train = peft_model
|
71 |
+
|
72 |
+
# Cleanup
|
73 |
+
gc.collect()
|
74 |
+
if torch.cuda.is_available():
|
75 |
+
torch.cuda.empty_cache()
|
76 |
+
|
77 |
+
# --- Load Dataset from Hub ---
|
78 |
local_download_path = "./downloaded_dataset_files"
|
79 |
|
80 |
+
try:
|
81 |
+
downloaded_repo_root = snapshot_download(
|
82 |
+
repo_id=hf_dataset_repo_id,
|
83 |
+
repo_type="dataset",
|
84 |
+
local_dir=local_download_path,
|
85 |
+
local_dir_use_symlinks=False
|
86 |
+
)
|
87 |
+
print(f"Dataset repository content downloaded to: {downloaded_repo_root}")
|
88 |
+
except Exception as e:
|
89 |
+
print(f"Error downloading dataset repository from Hub: {e}")
|
90 |
+
raise SystemExit("Dataset download failed.")
|
91 |
+
|
92 |
+
# --- Find and load the .pt files ---
|
93 |
+
pairs_dir = os.path.join(downloaded_repo_root, "final_rvq_pairs")
|
94 |
+
all_pair_files = glob.glob(os.path.join(pairs_dir, "*_rvq_pairs.pt"))
|
95 |
+
|
96 |
+
if not all_pair_files:
|
97 |
+
all_pair_files = glob.glob(os.path.join(downloaded_repo_root, "*_rvq_pairs.pt"))
|
98 |
+
if not all_pair_files:
|
99 |
+
raise FileNotFoundError(f"No RVQ pair files found in expected directories")
|
100 |
+
|
101 |
+
print(f"Found {len(all_pair_files)} RVQ pair files.")
|
102 |
+
|
103 |
+
# --- Load data from .pt files ---
|
104 |
+
all_data_pairs = []
|
105 |
+
for file_path in tqdm(all_pair_files, desc="Loading pair files"):
|
106 |
+
try:
|
107 |
+
episode_pairs = torch.load(file_path, map_location='cpu')
|
108 |
+
all_data_pairs.extend(episode_pairs)
|
109 |
+
except Exception as e:
|
110 |
+
print(f"Warning: Could not load file {file_path}: {e}")
|
111 |
+
|
112 |
+
if not all_data_pairs:
|
113 |
+
raise ValueError("No valid data pairs were loaded")
|
114 |
+
|
115 |
+
print(f"Loaded a total of {len(all_data_pairs)} training pairs into memory.")
|
116 |
+
|
117 |
+
# --- Convert to HF Dataset ---
|
118 |
+
def prepare_for_dataset(batch):
|
119 |
+
output = {'input_ids': [], 'labels': []}
|
120 |
+
for item in batch:
|
121 |
+
output['input_ids'].append(item['input_ids'].cpu().tolist())
|
122 |
+
output['labels'].append(item['labels'].cpu().tolist())
|
123 |
+
return output
|
124 |
|
125 |
+
chunk_size = 1000
|
126 |
+
processed_data = {'input_ids': [], 'labels': []}
|
127 |
+
for i in tqdm(range(0, len(all_data_pairs), chunk_size), desc="Preparing data for Dataset"):
|
128 |
+
batch = all_data_pairs[i:i + chunk_size]
|
129 |
+
prepared_batch = prepare_for_dataset(batch)
|
130 |
+
processed_data['input_ids'].extend(prepared_batch['input_ids'])
|
131 |
+
processed_data['labels'].extend(prepared_batch['labels'])
|
132 |
|
133 |
+
hf_dataset = Dataset.from_dict(processed_data)
|
|
|
134 |
|
135 |
+
# Transform to get tensors back
|
136 |
+
hf_dataset.set_transform(lambda batch: {
|
137 |
+
'input_ids': [torch.tensor(ids, dtype=torch.long) for ids in batch['input_ids']],
|
138 |
+
'labels': [torch.tensor(lbls, dtype=torch.long) for lbls in batch['labels']]
|
139 |
+
})
|
140 |
|
141 |
+
train_dataset = hf_dataset
|
142 |
+
|
143 |
+
# Cleanup
|
144 |
+
del all_data_pairs
|
145 |
+
del processed_data
|
146 |
+
gc.collect()
|
147 |
+
|
148 |
+
# --- Define Data Collator ---
|
149 |
def seq2seq_causal_collator(features):
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
batch = {}
|
151 |
concatenated_input_ids = []
|
152 |
concatenated_labels = []
|
153 |
max_len = 0
|
154 |
|
155 |
+
# First pass: Concatenate, create masked labels, find max length
|
156 |
for feature in features:
|
|
|
157 |
input_ids = feature['input_ids']
|
158 |
labels = feature['labels']
|
159 |
|
|
|
160 |
if input_ids.dim() > 1: input_ids = input_ids.squeeze()
|
161 |
if labels.dim() > 1: labels = labels.squeeze()
|
162 |
|
163 |
context_len = input_ids.shape[0]
|
164 |
target_len = labels.shape[0]
|
165 |
|
|
|
166 |
combined_ids = torch.cat([input_ids, labels], dim=0)
|
167 |
concatenated_input_ids.append(combined_ids)
|
168 |
|
|
|
169 |
masked_labels = torch.cat([
|
170 |
torch.full((context_len,), -100, dtype=torch.long, device=input_ids.device),
|
171 |
labels
|
172 |
], dim=0)
|
173 |
concatenated_labels.append(masked_labels)
|
174 |
|
|
|
175 |
if combined_ids.shape[0] > max_len:
|
176 |
max_len = combined_ids.shape[0]
|
177 |
|
178 |
+
# Second pass: Pad to max length
|
179 |
padded_input_ids = []
|
180 |
padded_labels = []
|
181 |
input_pad_token_id = 0
|
|
|
187 |
|
188 |
padding_len = max_len - ids.shape[0]
|
189 |
|
|
|
190 |
padded_input_ids.append(torch.nn.functional.pad(
|
191 |
ids, (0, padding_len), value=input_pad_token_id
|
192 |
))
|
|
|
194 |
lbls, (0, padding_len), value=label_pad_token_id
|
195 |
))
|
196 |
|
197 |
+
# Stack and create final batch
|
198 |
batch['input_ids'] = torch.stack(padded_input_ids)
|
199 |
batch['labels'] = torch.stack(padded_labels)
|
|
|
|
|
200 |
batch['attention_mask'] = batch['input_ids'].ne(input_pad_token_id).long()
|
201 |
|
202 |
return batch
|
203 |
|
204 |
+
data_collator = seq2seq_causal_collator
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
+
# --- Define Training Arguments and Initialize Trainer ---
|
207 |
+
from transformers import TrainingArguments, Trainer
|
208 |
+
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
+
# Output directories
|
211 |
+
OUTPUT_TRAINING_DIR = "./llama3-8b-rvq-qlora-finetuned-run"
|
212 |
+
LOGGING_DIR = "./llama3-8b-rvq-qlora-logs-run"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
# Training parameters - adjusted for 4x T4 GPUs
|
215 |
+
NUM_EPOCHS = 1
|
216 |
+
# Scale down per-device batch size since we have multiple GPUs now
|
217 |
+
BATCH_SIZE_PER_DEVICE = 1 # Smaller per-device batch size to avoid OOM
|
218 |
+
GRAD_ACCUMULATION_STEPS = 4
|
219 |
+
LEARNING_RATE = 1e-4
|
220 |
+
WEIGHT_DECAY = 0.01
|
221 |
+
WARMUP_RATIO = 0.03
|
222 |
+
LR_SCHEDULER = "cosine"
|
223 |
+
OPTIMIZER = "paged_adamw_8bit"
|
224 |
+
|
225 |
+
# Calculate total steps and warmup steps
|
226 |
+
# Total batch size is now batch_size × num_gpus × grad_accum_steps
|
227 |
+
total_train_batch_size = BATCH_SIZE_PER_DEVICE * n_gpus * GRAD_ACCUMULATION_STEPS
|
228 |
+
num_training_steps = math.ceil((len(train_dataset) * NUM_EPOCHS) / total_train_batch_size)
|
229 |
+
num_warmup_steps = int(num_training_steps * WARMUP_RATIO)
|
230 |
+
|
231 |
+
# Logging/Saving frequency
|
232 |
+
steps_per_epoch = math.ceil(len(train_dataset) / total_train_batch_size)
|
233 |
+
LOGGING_STEPS = max(10, steps_per_epoch // 15)
|
234 |
+
SAVE_STEPS = max(50, steps_per_epoch // 10)
|
235 |
+
|
236 |
+
print(f"Dataset size: {len(train_dataset)}")
|
237 |
+
print(f"Number of GPUs: {n_gpus}")
|
238 |
+
print(f"Batch size per device: {BATCH_SIZE_PER_DEVICE}")
|
239 |
+
print(f"Gradient Accumulation steps: {GRAD_ACCUMULATION_STEPS}")
|
240 |
+
print(f"Total train batch size (effective): {total_train_batch_size}")
|
241 |
+
print(f"Total optimization steps: {num_training_steps}")
|
242 |
+
print(f"Warmup steps: {num_warmup_steps}")
|
243 |
+
|
244 |
+
# Configure for multi-GPU training using DeepSpeed
|
245 |
+
training_args = TrainingArguments(
|
246 |
+
output_dir=OUTPUT_TRAINING_DIR,
|
247 |
+
num_train_epochs=NUM_EPOCHS,
|
248 |
+
per_device_train_batch_size=BATCH_SIZE_PER_DEVICE,
|
249 |
+
gradient_accumulation_steps=GRAD_ACCUMULATION_STEPS,
|
250 |
+
optim=OPTIMIZER,
|
251 |
+
logging_dir=LOGGING_DIR,
|
252 |
+
logging_strategy="steps",
|
253 |
+
logging_steps=LOGGING_STEPS,
|
254 |
+
save_strategy="steps",
|
255 |
+
save_steps=SAVE_STEPS,
|
256 |
+
save_total_limit=2,
|
257 |
+
learning_rate=LEARNING_RATE,
|
258 |
+
weight_decay=WEIGHT_DECAY,
|
259 |
+
warmup_steps=num_warmup_steps,
|
260 |
+
lr_scheduler_type=LR_SCHEDULER,
|
261 |
+
report_to="tensorboard",
|
262 |
+
bf16=True if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else False,
|
263 |
+
gradient_checkpointing=True,
|
264 |
+
gradient_checkpointing_kwargs={'use_reentrant': False},
|
265 |
+
|
266 |
+
# Multi-GPU specific settings
|
267 |
+
deepspeed="ds_config.json", # We'll create this file below
|
268 |
+
ddp_find_unused_parameters=False,
|
269 |
+
)
|
270 |
+
|
271 |
+
# --- Create DeepSpeed configuration file ---
|
272 |
+
import json
|
273 |
+
|
274 |
+
# DeepSpeed ZeRO-3 config optimized for T4 GPUs
|
275 |
+
ds_config = {
|
276 |
+
"fp16": {
|
277 |
+
"enabled": "auto",
|
278 |
+
"loss_scale": 0,
|
279 |
+
"loss_scale_window": 1000,
|
280 |
+
"initial_scale_power": 16,
|
281 |
+
"hysteresis": 2,
|
282 |
+
"min_loss_scale": 1
|
283 |
+
},
|
284 |
+
"bf16": {
|
285 |
+
"enabled": "auto"
|
286 |
+
},
|
287 |
+
"zero_optimization": {
|
288 |
+
"stage": 3,
|
289 |
+
"offload_optimizer": {
|
290 |
+
"device": "cpu",
|
291 |
+
"pin_memory": True
|
292 |
+
},
|
293 |
+
"offload_param": {
|
294 |
+
"device": "cpu",
|
295 |
+
"pin_memory": True
|
296 |
+
},
|
297 |
+
"overlap_comm": True,
|
298 |
+
"contiguous_gradients": True,
|
299 |
+
"reduce_bucket_size": "auto",
|
300 |
+
"stage3_prefetch_bucket_size": "auto",
|
301 |
+
"stage3_param_persistence_threshold": "auto",
|
302 |
+
"gather_16bit_weights_on_model_save": True,
|
303 |
+
"stage3_max_live_parameters": 1e9,
|
304 |
+
"stage3_max_reuse_distance": 1e9
|
305 |
+
},
|
306 |
+
"gradient_accumulation_steps": GRAD_ACCUMULATION_STEPS,
|
307 |
+
"gradient_clipping": "auto",
|
308 |
+
"steps_per_print": 10,
|
309 |
+
"train_batch_size": "auto",
|
310 |
+
"train_micro_batch_size_per_gpu": "auto",
|
311 |
+
"wall_clock_breakdown": False
|
312 |
+
}
|
313 |
+
|
314 |
+
with open("ds_config.json", "w") as f:
|
315 |
+
json.dump(ds_config, f, indent=4)
|
316 |
+
|
317 |
+
# --- Initialize Trainer ---
|
318 |
+
trainer = Trainer(
|
319 |
+
model=model_to_train,
|
320 |
+
args=training_args,
|
321 |
+
train_dataset=train_dataset,
|
322 |
+
data_collator=data_collator,
|
323 |
+
)
|
324 |
+
|
325 |
+
print("Trainer initialized with DeepSpeed for multi-GPU training.")
|
326 |
+
|
327 |
+
# --- Start Training ---
|
328 |
+
# Clear cache before starting
|
329 |
+
gc.collect()
|
330 |
+
if torch.cuda.is_available():
|
331 |
+
torch.cuda.empty_cache()
|
332 |
+
|
333 |
+
try:
|
334 |
+
print("Starting distributed training on multiple GPUs...")
|
335 |
+
train_result = trainer.train()
|
336 |
+
|
337 |
+
# Save final model (adapter weights) and training state
|
338 |
+
final_save_path = os.path.join(training_args.output_dir, "final_checkpoint")
|
339 |
+
print(f"Saving final model checkpoint to {final_save_path}...")
|
340 |
+
trainer.save_model(final_save_path)
|
341 |
+
trainer.save_state()
|
342 |
+
|
343 |
+
# Log metrics
|
344 |
+
metrics = train_result.metrics
|
345 |
+
trainer.log_metrics("train", metrics)
|
346 |
+
trainer.save_metrics("train", metrics)
|
347 |
+
|
348 |
+
except Exception as e:
|
349 |
+
print(f"An error occurred during training: {e}")
|
350 |
+
raise e
|
351 |
+
|
352 |
+
print("Multi-GPU training process complete.")
|