Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,327 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import subprocess
|
3 |
-
import sys
|
4 |
import os
|
5 |
-
import glob
|
6 |
-
import json
|
7 |
-
import math
|
8 |
import torch
|
|
|
9 |
import gc
|
10 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from datasets import Dataset
|
12 |
from huggingface_hub import snapshot_download
|
13 |
-
from
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
# Function to run the training process
|
17 |
def train_model(
|
18 |
hf_username,
|
19 |
model_repo_name,
|
@@ -61,8 +369,22 @@ def train_model(
|
|
61 |
# --- Load Base Model (with quantization) ---
|
62 |
progress(0.1, desc="Loading base model...")
|
63 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
model = AutoModelForCausalLM.from_pretrained(
|
65 |
hf_model_repo_id,
|
|
|
66 |
quantization_config=bnb_config,
|
67 |
device_map="auto",
|
68 |
trust_remote_code=True
|
@@ -72,12 +394,46 @@ def train_model(
|
|
72 |
except Exception as e:
|
73 |
error_msg = f"Error loading model from Hub: {e}"
|
74 |
log.append(error_msg)
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
#
|
78 |
-
progress(0.15, desc="Preparing model for fine-tuning...")
|
79 |
model = prepare_model_for_kbit_training(model)
|
80 |
|
|
|
81 |
lora_config = LoraConfig(
|
82 |
task_type=TaskType.CAUSAL_LM,
|
83 |
r=16,
|
@@ -428,4 +784,4 @@ def create_interface():
|
|
428 |
# Create and launch the interface
|
429 |
demo = create_interface()
|
430 |
if __name__ == "__main__":
|
431 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
import glob
|
4 |
import gc
|
5 |
+
from transformers import (
|
6 |
+
AutoModelForCausalLM,
|
7 |
+
AutoTokenizer,
|
8 |
+
BitsAndBytesConfig,
|
9 |
+
TrainingArguments,
|
10 |
+
Trainer,
|
11 |
+
DataCollatorForLanguageModeling,
|
12 |
+
AutoTokenizer,
|
13 |
+
LlamaConfig
|
14 |
+
)
|
15 |
+
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
|
16 |
from datasets import Dataset
|
17 |
from huggingface_hub import snapshot_download
|
18 |
+
from tqdm import tqdm
|
19 |
+
import gradio as gr
|
20 |
+
import math
|
21 |
+
from accelerate import Accelerator
|
22 |
+
import subprocess
|
23 |
+
import sys
|
24 |
+
import json
|
25 |
+
|
26 |
+
# --- Configuration ---
|
27 |
+
YOUR_HF_USERNAME = "Twelve2five"
|
28 |
+
MODEL_REPO_NAME = "llama-3-8b-rvq-resized"
|
29 |
+
DATASET_REPO_NAME = "podcast-dialogue-rvq-pairs-3items"
|
30 |
+
|
31 |
+
hf_model_repo_id = f"{YOUR_HF_USERNAME}/{MODEL_REPO_NAME}"
|
32 |
+
hf_dataset_repo_id = f"{YOUR_HF_USERNAME}/{DATASET_REPO_NAME}"
|
33 |
+
|
34 |
+
# Output directories
|
35 |
+
OUTPUT_TRAINING_DIR = "./llama3-8b-rvq-qlora-finetuned-run"
|
36 |
+
LOGGING_DIR = "./llama3-8b-rvq-qlora-logs-run"
|
37 |
+
local_download_path = "./downloaded_dataset_files"
|
38 |
+
|
39 |
+
# Training parameters
|
40 |
+
NUM_EPOCHS = 1
|
41 |
+
BATCH_SIZE_PER_DEVICE = 1
|
42 |
+
GRAD_ACCUMULATION_STEPS = 64
|
43 |
+
LEARNING_RATE = 1e-4
|
44 |
+
WEIGHT_DECAY = 0.01
|
45 |
+
WARMUP_RATIO = 0.03
|
46 |
+
LR_SCHEDULER = "cosine"
|
47 |
+
OPTIMIZER = "paged_adamw_8bit"
|
48 |
+
MAX_SEQ_LENGTH = 256
|
49 |
+
MICRO_BATCH_SIZE = 1
|
50 |
+
|
51 |
+
# Multi-GPU configuration
|
52 |
+
accelerator = Accelerator()
|
53 |
+
|
54 |
+
# Configure environment for multi-GPU
|
55 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32"
|
56 |
+
|
57 |
+
# Print GPU information
|
58 |
+
print(f"Available GPUs: {torch.cuda.device_count()}")
|
59 |
+
for i in range(torch.cuda.device_count()):
|
60 |
+
print(f"GPU {i}: {torch.cuda.get_device_name(i)} with {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB")
|
61 |
+
|
62 |
+
def seq2seq_causal_collator(features):
|
63 |
+
"""
|
64 |
+
Collator that concatenates context (input_ids) and target (labels)
|
65 |
+
for Causal LM sequence-to-sequence training.
|
66 |
+
Masks the loss for the context part of the sequence.
|
67 |
+
Pads sequences to the maximum length in the batch.
|
68 |
+
"""
|
69 |
+
batch = {}
|
70 |
+
concatenated_input_ids = []
|
71 |
+
concatenated_labels = []
|
72 |
+
max_len = 0
|
73 |
+
|
74 |
+
# --- First pass: Concatenate, create masked labels, find max length ---
|
75 |
+
for feature in features:
|
76 |
+
# Dataset transform should provide tensors here
|
77 |
+
input_ids = feature['input_ids']
|
78 |
+
labels = feature['labels']
|
79 |
+
|
80 |
+
# Ensure tensors are 1D (handle potential extra dims if any)
|
81 |
+
if input_ids.dim() > 1: input_ids = input_ids.squeeze()
|
82 |
+
if labels.dim() > 1: labels = labels.squeeze()
|
83 |
+
|
84 |
+
context_len = input_ids.shape[0]
|
85 |
+
target_len = labels.shape[0]
|
86 |
+
|
87 |
+
# Concatenate context and target for input
|
88 |
+
combined_ids = torch.cat([input_ids, labels], dim=0)
|
89 |
+
concatenated_input_ids.append(combined_ids)
|
90 |
+
|
91 |
+
# Create labels: -100 for context, actual labels for target
|
92 |
+
masked_labels = torch.cat([
|
93 |
+
torch.full((context_len,), -100, dtype=torch.long, device=input_ids.device),
|
94 |
+
labels
|
95 |
+
], dim=0)
|
96 |
+
concatenated_labels.append(masked_labels)
|
97 |
+
|
98 |
+
# Track max length for padding
|
99 |
+
if combined_ids.shape[0] > max_len:
|
100 |
+
max_len = combined_ids.shape[0]
|
101 |
+
|
102 |
+
# --- Second pass: Pad to max length ---
|
103 |
+
padded_input_ids = []
|
104 |
+
padded_labels = []
|
105 |
+
input_pad_token_id = 0
|
106 |
+
label_pad_token_id = -100
|
107 |
+
|
108 |
+
for i in range(len(features)):
|
109 |
+
ids = concatenated_input_ids[i]
|
110 |
+
lbls = concatenated_labels[i]
|
111 |
+
|
112 |
+
padding_len = max_len - ids.shape[0]
|
113 |
+
|
114 |
+
# Pad on the right side
|
115 |
+
padded_input_ids.append(torch.nn.functional.pad(
|
116 |
+
ids, (0, padding_len), value=input_pad_token_id
|
117 |
+
))
|
118 |
+
padded_labels.append(torch.nn.functional.pad(
|
119 |
+
lbls, (0, padding_len), value=label_pad_token_id
|
120 |
+
))
|
121 |
+
|
122 |
+
# --- Stack and create final batch ---
|
123 |
+
batch['input_ids'] = torch.stack(padded_input_ids)
|
124 |
+
batch['labels'] = torch.stack(padded_labels)
|
125 |
+
|
126 |
+
# Create attention mask (1 for real tokens, 0 for padding)
|
127 |
+
batch['attention_mask'] = batch['input_ids'].ne(input_pad_token_id).long()
|
128 |
+
|
129 |
+
return batch
|
130 |
+
|
131 |
+
def prepare_for_dataset(batch):
|
132 |
+
output = {'input_ids': [], 'labels': []}
|
133 |
+
for item in batch:
|
134 |
+
output['input_ids'].append(item['input_ids'].cpu().tolist())
|
135 |
+
output['labels'].append(item['labels'].cpu().tolist())
|
136 |
+
return output
|
137 |
+
|
138 |
+
def load_model():
|
139 |
+
print(f"Loading base model architecture from: {hf_model_repo_id}")
|
140 |
+
|
141 |
+
# Get information about GPU with most free memory
|
142 |
+
gpu_id = 0 # Default to first GPU
|
143 |
+
max_free_memory = 0
|
144 |
+
|
145 |
+
for i in range(torch.cuda.device_count()):
|
146 |
+
free_memory = torch.cuda.get_device_properties(i).total_memory - torch.cuda.memory_allocated(i)
|
147 |
+
if free_memory > max_free_memory:
|
148 |
+
max_free_memory = free_memory
|
149 |
+
gpu_id = i
|
150 |
+
|
151 |
+
print(f"Loading model on GPU {gpu_id} with {max_free_memory / 1e9:.2f}GB free memory")
|
152 |
+
|
153 |
+
# Configure quantization
|
154 |
+
bnb_config = BitsAndBytesConfig(
|
155 |
+
load_in_4bit=True,
|
156 |
+
bnb_4bit_use_double_quant=True,
|
157 |
+
bnb_4bit_quant_type="nf4",
|
158 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
159 |
+
)
|
160 |
+
|
161 |
+
# Load the model
|
162 |
+
try:
|
163 |
+
# First update transformers to make sure we have latest version
|
164 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "transformers"])
|
165 |
+
|
166 |
+
# Now try loading with explicit config class to avoid auto-detection issues
|
167 |
+
from transformers import LlamaConfig
|
168 |
+
|
169 |
+
# Load config first
|
170 |
+
config = LlamaConfig.from_pretrained(
|
171 |
+
hf_model_repo_id,
|
172 |
+
trust_remote_code=True
|
173 |
+
)
|
174 |
+
|
175 |
+
# Then load model with explicit config
|
176 |
+
model = AutoModelForCausalLM.from_pretrained(
|
177 |
+
hf_model_repo_id,
|
178 |
+
config=config,
|
179 |
+
quantization_config=bnb_config,
|
180 |
+
device_map="auto",
|
181 |
+
trust_remote_code=True
|
182 |
+
)
|
183 |
+
log.append(f"Loaded model vocab size: {model.config.vocab_size}")
|
184 |
+
log.append(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
|
185 |
+
except Exception as e:
|
186 |
+
error_msg = f"Error loading model from Hub: {e}"
|
187 |
+
log.append(error_msg)
|
188 |
+
# Try with a fallback method
|
189 |
+
try:
|
190 |
+
log.append("Attempting alternative loading method...")
|
191 |
+
# Try loading without auto detection
|
192 |
+
model = AutoModelForCausalLM.from_pretrained(
|
193 |
+
hf_model_repo_id,
|
194 |
+
quantization_config=bnb_config,
|
195 |
+
device_map="auto",
|
196 |
+
trust_remote_code=True,
|
197 |
+
torch_dtype=torch.bfloat16,
|
198 |
+
# Add these to help with the loading
|
199 |
+
revision="main",
|
200 |
+
low_cpu_mem_usage=True,
|
201 |
+
)
|
202 |
+
log.append("Alternative loading successful!")
|
203 |
+
log.append(f"Loaded model vocab size: {model.config.vocab_size}")
|
204 |
+
except Exception as e2:
|
205 |
+
log.append(f"Alternative loading also failed: {e2}")
|
206 |
+
return "\n".join(log)
|
207 |
+
|
208 |
+
# Load the official Meta tokenizer for LLaMA 3
|
209 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
210 |
+
"meta-llama/Llama-3-8B", # Use the official Meta tokenizer
|
211 |
+
use_auth_token=os.environ.get("HF_TOKEN", None) # In case it's needed
|
212 |
+
)
|
213 |
+
|
214 |
+
if tokenizer is None:
|
215 |
+
# Fallback to another common foundation model tokenizer
|
216 |
+
print("Falling back to another tokenizer as Meta tokenizer requires auth token")
|
217 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
218 |
+
|
219 |
+
print(f"Loaded tokenizer vocabulary size: {len(tokenizer)}")
|
220 |
+
|
221 |
+
# Print information about input embeddings
|
222 |
+
print(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
|
223 |
+
|
224 |
+
# Prepare model for k-bit training
|
225 |
+
model = prepare_model_for_kbit_training(model)
|
226 |
+
|
227 |
+
# Define LoRA configuration
|
228 |
+
lora_config = LoraConfig(
|
229 |
+
r=16,
|
230 |
+
lora_alpha=32,
|
231 |
+
target_modules=[
|
232 |
+
"q_proj",
|
233 |
+
"k_proj",
|
234 |
+
"v_proj",
|
235 |
+
"o_proj",
|
236 |
+
"gate_proj",
|
237 |
+
"up_proj",
|
238 |
+
"down_proj",
|
239 |
+
],
|
240 |
+
lora_dropout=0.05,
|
241 |
+
bias="none",
|
242 |
+
task_type=TaskType.CAUSAL_LM
|
243 |
+
)
|
244 |
+
|
245 |
+
# Apply LoRA to model
|
246 |
+
model = get_peft_model(model, lora_config)
|
247 |
+
model.print_trainable_parameters()
|
248 |
+
|
249 |
+
return model, tokenizer # Return both model and tokenizer
|
250 |
+
|
251 |
+
def load_dataset():
|
252 |
+
# --- Download the dataset repository files ---
|
253 |
+
try:
|
254 |
+
os.makedirs(local_download_path, exist_ok=True)
|
255 |
+
downloaded_repo_root = snapshot_download(
|
256 |
+
repo_id=hf_dataset_repo_id,
|
257 |
+
repo_type="dataset",
|
258 |
+
local_dir=local_download_path,
|
259 |
+
local_dir_use_symlinks=False
|
260 |
+
)
|
261 |
+
print(f"Dataset repository content downloaded to: {downloaded_repo_root}")
|
262 |
+
except Exception as e:
|
263 |
+
print(f"Error downloading dataset: {e}")
|
264 |
+
return None
|
265 |
+
|
266 |
+
# --- Load .pt files into a Hugging Face Dataset object ---
|
267 |
+
pairs_dir = os.path.join(downloaded_repo_root, "final_rvq_pairs")
|
268 |
+
all_pair_files = glob.glob(os.path.join(pairs_dir, "*_rvq_pairs.pt"))
|
269 |
+
|
270 |
+
if not all_pair_files:
|
271 |
+
all_pair_files = glob.glob(os.path.join(downloaded_repo_root, "*_rvq_pairs.pt"))
|
272 |
+
if not all_pair_files:
|
273 |
+
print("No RVQ pair files found!")
|
274 |
+
return None
|
275 |
+
|
276 |
+
print(f"Found {len(all_pair_files)} RVQ pair files.")
|
277 |
+
|
278 |
+
# Load data from .pt files into memory
|
279 |
+
all_data_pairs = []
|
280 |
+
for file_path in tqdm(all_pair_files, desc="Loading pair files"):
|
281 |
+
try:
|
282 |
+
episode_pairs = torch.load(file_path, map_location='cpu')
|
283 |
+
all_data_pairs.extend(episode_pairs)
|
284 |
+
except Exception as e:
|
285 |
+
print(f"Warning: Could not load file {file_path}: {e}")
|
286 |
+
|
287 |
+
if not all_data_pairs:
|
288 |
+
return None
|
289 |
+
|
290 |
+
print(f"Loaded {len(all_data_pairs)} training pairs.")
|
291 |
+
|
292 |
+
# Convert to Hugging Face Dataset
|
293 |
+
chunk_size = 1000
|
294 |
+
processed_data = {'input_ids': [], 'labels': []}
|
295 |
+
for i in tqdm(range(0, len(all_data_pairs), chunk_size), desc="Preparing data"):
|
296 |
+
batch = all_data_pairs[i:i + chunk_size]
|
297 |
+
prepared_batch = prepare_for_dataset(batch)
|
298 |
+
processed_data['input_ids'].extend(prepared_batch['input_ids'])
|
299 |
+
processed_data['labels'].extend(prepared_batch['labels'])
|
300 |
+
|
301 |
+
hf_dataset = Dataset.from_dict(processed_data)
|
302 |
+
|
303 |
+
# Transform to get tensors back
|
304 |
+
hf_dataset.set_transform(lambda batch: {
|
305 |
+
'input_ids': [torch.tensor(ids, dtype=torch.long) for ids in batch['input_ids']],
|
306 |
+
'labels': [torch.tensor(lbls, dtype=torch.long) for lbls in batch['labels']]
|
307 |
+
})
|
308 |
+
|
309 |
+
# Cleanup
|
310 |
+
del all_data_pairs
|
311 |
+
del processed_data
|
312 |
+
gc.collect()
|
313 |
+
|
314 |
+
return hf_dataset
|
315 |
+
|
316 |
+
# Memory cleaning function
|
317 |
+
def clean_memory():
|
318 |
+
gc.collect()
|
319 |
+
if torch.cuda.is_available():
|
320 |
+
for i in range(torch.cuda.device_count()):
|
321 |
+
with torch.cuda.device(f'cuda:{i}'):
|
322 |
+
torch.cuda.empty_cache()
|
323 |
+
torch.cuda.reset_peak_memory_stats()
|
324 |
|
|
|
325 |
def train_model(
|
326 |
hf_username,
|
327 |
model_repo_name,
|
|
|
369 |
# --- Load Base Model (with quantization) ---
|
370 |
progress(0.1, desc="Loading base model...")
|
371 |
try:
|
372 |
+
# First update transformers to make sure we have latest version
|
373 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "transformers"])
|
374 |
+
|
375 |
+
# Now try loading with explicit config class to avoid auto-detection issues
|
376 |
+
from transformers import LlamaConfig
|
377 |
+
|
378 |
+
# Load config first
|
379 |
+
config = LlamaConfig.from_pretrained(
|
380 |
+
hf_model_repo_id,
|
381 |
+
trust_remote_code=True
|
382 |
+
)
|
383 |
+
|
384 |
+
# Then load model with explicit config
|
385 |
model = AutoModelForCausalLM.from_pretrained(
|
386 |
hf_model_repo_id,
|
387 |
+
config=config,
|
388 |
quantization_config=bnb_config,
|
389 |
device_map="auto",
|
390 |
trust_remote_code=True
|
|
|
394 |
except Exception as e:
|
395 |
error_msg = f"Error loading model from Hub: {e}"
|
396 |
log.append(error_msg)
|
397 |
+
# Try with a fallback method
|
398 |
+
try:
|
399 |
+
log.append("Attempting alternative loading method...")
|
400 |
+
# Try loading without auto detection
|
401 |
+
model = AutoModelForCausalLM.from_pretrained(
|
402 |
+
hf_model_repo_id,
|
403 |
+
quantization_config=bnb_config,
|
404 |
+
device_map="auto",
|
405 |
+
trust_remote_code=True,
|
406 |
+
torch_dtype=torch.bfloat16,
|
407 |
+
# Add these to help with the loading
|
408 |
+
revision="main",
|
409 |
+
low_cpu_mem_usage=True,
|
410 |
+
)
|
411 |
+
log.append("Alternative loading successful!")
|
412 |
+
log.append(f"Loaded model vocab size: {model.config.vocab_size}")
|
413 |
+
except Exception as e2:
|
414 |
+
log.append(f"Alternative loading also failed: {e2}")
|
415 |
+
return "\n".join(log)
|
416 |
+
|
417 |
+
# Load the official Meta tokenizer for LLaMA 3
|
418 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
419 |
+
"meta-llama/Llama-3-8B", # Use the official Meta tokenizer
|
420 |
+
use_auth_token=os.environ.get("HF_TOKEN", None) # In case it's needed
|
421 |
+
)
|
422 |
+
|
423 |
+
if tokenizer is None:
|
424 |
+
# Fallback to another common foundation model tokenizer
|
425 |
+
print("Falling back to another tokenizer as Meta tokenizer requires auth token")
|
426 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
427 |
+
|
428 |
+
print(f"Loaded tokenizer vocabulary size: {len(tokenizer)}")
|
429 |
+
|
430 |
+
# Print information about input embeddings
|
431 |
+
print(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
|
432 |
|
433 |
+
# Prepare model for k-bit training
|
|
|
434 |
model = prepare_model_for_kbit_training(model)
|
435 |
|
436 |
+
# Define LoRA configuration
|
437 |
lora_config = LoraConfig(
|
438 |
task_type=TaskType.CAUSAL_LM,
|
439 |
r=16,
|
|
|
784 |
# Create and launch the interface
|
785 |
demo = create_interface()
|
786 |
if __name__ == "__main__":
|
787 |
+
demo.launch()
|