Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import glob
|
| 4 |
+
import gc
|
| 5 |
+
from transformers import (
|
| 6 |
+
AutoModelForCausalLM,
|
| 7 |
+
BitsAndBytesConfig,
|
| 8 |
+
TrainingArguments,
|
| 9 |
+
Trainer
|
| 10 |
+
)
|
| 11 |
+
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
|
| 12 |
+
from datasets import Dataset
|
| 13 |
+
from huggingface_hub import snapshot_download
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
import gradio as gr
|
| 16 |
+
import math
|
| 17 |
+
|
| 18 |
+
# --- Configuration ---
|
| 19 |
+
YOUR_HF_USERNAME = "Twelve2five"
|
| 20 |
+
MODEL_REPO_NAME = "llama-3-8b-rvq-resized"
|
| 21 |
+
DATASET_REPO_NAME = "podcast-dialogue-rvq-pairs-3items"
|
| 22 |
+
|
| 23 |
+
hf_model_repo_id = f"{YOUR_HF_USERNAME}/{MODEL_REPO_NAME}"
|
| 24 |
+
hf_dataset_repo_id = f"{YOUR_HF_USERNAME}/{DATASET_REPO_NAME}"
|
| 25 |
+
|
| 26 |
+
# Output directories
|
| 27 |
+
OUTPUT_TRAINING_DIR = "./llama3-8b-rvq-qlora-finetuned-run"
|
| 28 |
+
LOGGING_DIR = "./llama3-8b-rvq-qlora-logs-run"
|
| 29 |
+
local_download_path = "./downloaded_dataset_files"
|
| 30 |
+
|
| 31 |
+
# Training parameters
|
| 32 |
+
NUM_EPOCHS = 1
|
| 33 |
+
BATCH_SIZE_PER_DEVICE = 2
|
| 34 |
+
GRAD_ACCUMULATION_STEPS = 4
|
| 35 |
+
LEARNING_RATE = 1e-4
|
| 36 |
+
WEIGHT_DECAY = 0.01
|
| 37 |
+
WARMUP_RATIO = 0.03
|
| 38 |
+
LR_SCHEDULER = "cosine"
|
| 39 |
+
OPTIMIZER = "paged_adamw_8bit"
|
| 40 |
+
|
| 41 |
+
def seq2seq_causal_collator(features):
|
| 42 |
+
"""
|
| 43 |
+
Collator that concatenates context (input_ids) and target (labels)
|
| 44 |
+
for Causal LM sequence-to-sequence training.
|
| 45 |
+
Masks the loss for the context part of the sequence.
|
| 46 |
+
Pads sequences to the maximum length in the batch.
|
| 47 |
+
"""
|
| 48 |
+
batch = {}
|
| 49 |
+
concatenated_input_ids = []
|
| 50 |
+
concatenated_labels = []
|
| 51 |
+
max_len = 0
|
| 52 |
+
|
| 53 |
+
# --- First pass: Concatenate, create masked labels, find max length ---
|
| 54 |
+
for feature in features:
|
| 55 |
+
# Dataset transform should provide tensors here
|
| 56 |
+
input_ids = feature['input_ids']
|
| 57 |
+
labels = feature['labels']
|
| 58 |
+
|
| 59 |
+
# Ensure tensors are 1D (handle potential extra dims if any)
|
| 60 |
+
if input_ids.dim() > 1: input_ids = input_ids.squeeze()
|
| 61 |
+
if labels.dim() > 1: labels = labels.squeeze()
|
| 62 |
+
|
| 63 |
+
context_len = input_ids.shape[0]
|
| 64 |
+
target_len = labels.shape[0]
|
| 65 |
+
|
| 66 |
+
# Concatenate context and target for input
|
| 67 |
+
combined_ids = torch.cat([input_ids, labels], dim=0)
|
| 68 |
+
concatenated_input_ids.append(combined_ids)
|
| 69 |
+
|
| 70 |
+
# Create labels: -100 for context, actual labels for target
|
| 71 |
+
masked_labels = torch.cat([
|
| 72 |
+
torch.full((context_len,), -100, dtype=torch.long, device=input_ids.device),
|
| 73 |
+
labels
|
| 74 |
+
], dim=0)
|
| 75 |
+
concatenated_labels.append(masked_labels)
|
| 76 |
+
|
| 77 |
+
# Track max length for padding
|
| 78 |
+
if combined_ids.shape[0] > max_len:
|
| 79 |
+
max_len = combined_ids.shape[0]
|
| 80 |
+
|
| 81 |
+
# --- Second pass: Pad to max length ---
|
| 82 |
+
padded_input_ids = []
|
| 83 |
+
padded_labels = []
|
| 84 |
+
input_pad_token_id = 0
|
| 85 |
+
label_pad_token_id = -100
|
| 86 |
+
|
| 87 |
+
for i in range(len(features)):
|
| 88 |
+
ids = concatenated_input_ids[i]
|
| 89 |
+
lbls = concatenated_labels[i]
|
| 90 |
+
|
| 91 |
+
padding_len = max_len - ids.shape[0]
|
| 92 |
+
|
| 93 |
+
# Pad on the right side
|
| 94 |
+
padded_input_ids.append(torch.nn.functional.pad(
|
| 95 |
+
ids, (0, padding_len), value=input_pad_token_id
|
| 96 |
+
))
|
| 97 |
+
padded_labels.append(torch.nn.functional.pad(
|
| 98 |
+
lbls, (0, padding_len), value=label_pad_token_id
|
| 99 |
+
))
|
| 100 |
+
|
| 101 |
+
# --- Stack and create final batch ---
|
| 102 |
+
batch['input_ids'] = torch.stack(padded_input_ids)
|
| 103 |
+
batch['labels'] = torch.stack(padded_labels)
|
| 104 |
+
|
| 105 |
+
# Create attention mask (1 for real tokens, 0 for padding)
|
| 106 |
+
batch['attention_mask'] = batch['input_ids'].ne(input_pad_token_id).long()
|
| 107 |
+
|
| 108 |
+
return batch
|
| 109 |
+
|
| 110 |
+
def prepare_for_dataset(batch):
|
| 111 |
+
output = {'input_ids': [], 'labels': []}
|
| 112 |
+
for item in batch:
|
| 113 |
+
output['input_ids'].append(item['input_ids'].cpu().tolist())
|
| 114 |
+
output['labels'].append(item['labels'].cpu().tolist())
|
| 115 |
+
return output
|
| 116 |
+
|
| 117 |
+
def load_model():
|
| 118 |
+
# For HF Spaces, we use the system CUDA if available
|
| 119 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 120 |
+
print(f"Loading base model architecture from: {hf_model_repo_id}")
|
| 121 |
+
print(f"Using device: {DEVICE}")
|
| 122 |
+
|
| 123 |
+
# --- Quantization Configuration ---
|
| 124 |
+
bnb_config = BitsAndBytesConfig(
|
| 125 |
+
load_in_4bit=True,
|
| 126 |
+
bnb_4bit_quant_type="nf4",
|
| 127 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 128 |
+
bnb_4bit_use_double_quant=True,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# --- Load Base Model (with quantization) ---
|
| 132 |
+
try:
|
| 133 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 134 |
+
hf_model_repo_id,
|
| 135 |
+
quantization_config=bnb_config,
|
| 136 |
+
device_map="auto",
|
| 137 |
+
trust_remote_code=True
|
| 138 |
+
)
|
| 139 |
+
print(f"Loaded model vocab size: {model.config.vocab_size}")
|
| 140 |
+
print(f"Input embedding shape: {model.get_input_embeddings().weight.shape}")
|
| 141 |
+
except Exception as e:
|
| 142 |
+
print(f"Error loading model: {e}")
|
| 143 |
+
return None
|
| 144 |
+
|
| 145 |
+
# --- Prepare for K-bit Training & Apply LoRA ---
|
| 146 |
+
model = prepare_model_for_kbit_training(model)
|
| 147 |
+
|
| 148 |
+
lora_config = LoraConfig(
|
| 149 |
+
task_type=TaskType.CAUSAL_LM,
|
| 150 |
+
r=16,
|
| 151 |
+
lora_alpha=32,
|
| 152 |
+
lora_dropout=0.05,
|
| 153 |
+
bias="none",
|
| 154 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
peft_model = get_peft_model(model, lora_config)
|
| 158 |
+
peft_model.print_trainable_parameters()
|
| 159 |
+
|
| 160 |
+
# Cleanup
|
| 161 |
+
gc.collect()
|
| 162 |
+
if torch.cuda.is_available():
|
| 163 |
+
torch.cuda.empty_cache()
|
| 164 |
+
|
| 165 |
+
return peft_model
|
| 166 |
+
|
| 167 |
+
def load_dataset():
|
| 168 |
+
# --- Download the dataset repository files ---
|
| 169 |
+
try:
|
| 170 |
+
os.makedirs(local_download_path, exist_ok=True)
|
| 171 |
+
downloaded_repo_root = snapshot_download(
|
| 172 |
+
repo_id=hf_dataset_repo_id,
|
| 173 |
+
repo_type="dataset",
|
| 174 |
+
local_dir=local_download_path,
|
| 175 |
+
local_dir_use_symlinks=False
|
| 176 |
+
)
|
| 177 |
+
print(f"Dataset repository content downloaded to: {downloaded_repo_root}")
|
| 178 |
+
except Exception as e:
|
| 179 |
+
print(f"Error downloading dataset: {e}")
|
| 180 |
+
return None
|
| 181 |
+
|
| 182 |
+
# --- Load .pt files into a Hugging Face Dataset object ---
|
| 183 |
+
pairs_dir = os.path.join(downloaded_repo_root, "final_rvq_pairs")
|
| 184 |
+
all_pair_files = glob.glob(os.path.join(pairs_dir, "*_rvq_pairs.pt"))
|
| 185 |
+
|
| 186 |
+
if not all_pair_files:
|
| 187 |
+
all_pair_files = glob.glob(os.path.join(downloaded_repo_root, "*_rvq_pairs.pt"))
|
| 188 |
+
if not all_pair_files:
|
| 189 |
+
print("No RVQ pair files found!")
|
| 190 |
+
return None
|
| 191 |
+
|
| 192 |
+
print(f"Found {len(all_pair_files)} RVQ pair files.")
|
| 193 |
+
|
| 194 |
+
# Load data from .pt files into memory
|
| 195 |
+
all_data_pairs = []
|
| 196 |
+
for file_path in tqdm(all_pair_files, desc="Loading pair files"):
|
| 197 |
+
try:
|
| 198 |
+
episode_pairs = torch.load(file_path, map_location='cpu')
|
| 199 |
+
all_data_pairs.extend(episode_pairs)
|
| 200 |
+
except Exception as e:
|
| 201 |
+
print(f"Warning: Could not load file {file_path}: {e}")
|
| 202 |
+
|
| 203 |
+
if not all_data_pairs:
|
| 204 |
+
return None
|
| 205 |
+
|
| 206 |
+
print(f"Loaded {len(all_data_pairs)} training pairs.")
|
| 207 |
+
|
| 208 |
+
# Convert to Hugging Face Dataset
|
| 209 |
+
chunk_size = 1000
|
| 210 |
+
processed_data = {'input_ids': [], 'labels': []}
|
| 211 |
+
for i in tqdm(range(0, len(all_data_pairs), chunk_size), desc="Preparing data"):
|
| 212 |
+
batch = all_data_pairs[i:i + chunk_size]
|
| 213 |
+
prepared_batch = prepare_for_dataset(batch)
|
| 214 |
+
processed_data['input_ids'].extend(prepared_batch['input_ids'])
|
| 215 |
+
processed_data['labels'].extend(prepared_batch['labels'])
|
| 216 |
+
|
| 217 |
+
hf_dataset = Dataset.from_dict(processed_data)
|
| 218 |
+
|
| 219 |
+
# Transform to get tensors back
|
| 220 |
+
hf_dataset.set_transform(lambda batch: {
|
| 221 |
+
'input_ids': [torch.tensor(ids, dtype=torch.long) for ids in batch['input_ids']],
|
| 222 |
+
'labels': [torch.tensor(lbls, dtype=torch.long) for lbls in batch['labels']]
|
| 223 |
+
})
|
| 224 |
+
|
| 225 |
+
# Cleanup
|
| 226 |
+
del all_data_pairs
|
| 227 |
+
del processed_data
|
| 228 |
+
gc.collect()
|
| 229 |
+
|
| 230 |
+
return hf_dataset
|
| 231 |
+
|
| 232 |
+
def train_model(progress=gr.Progress()):
|
| 233 |
+
# Create directories
|
| 234 |
+
os.makedirs(OUTPUT_TRAINING_DIR, exist_ok=True)
|
| 235 |
+
os.makedirs(LOGGING_DIR, exist_ok=True)
|
| 236 |
+
|
| 237 |
+
progress(0, desc="Loading model...")
|
| 238 |
+
model_to_train = load_model()
|
| 239 |
+
if model_to_train is None:
|
| 240 |
+
return "Failed to load model."
|
| 241 |
+
|
| 242 |
+
progress(0.2, desc="Loading dataset...")
|
| 243 |
+
train_dataset = load_dataset()
|
| 244 |
+
if train_dataset is None:
|
| 245 |
+
return "Failed to load dataset."
|
| 246 |
+
|
| 247 |
+
progress(0.4, desc="Setting up trainer...")
|
| 248 |
+
# Calculate steps and warmup
|
| 249 |
+
total_train_batch_size = BATCH_SIZE_PER_DEVICE * GRAD_ACCUMULATION_STEPS
|
| 250 |
+
num_training_steps = math.ceil((len(train_dataset) * NUM_EPOCHS) / total_train_batch_size)
|
| 251 |
+
num_warmup_steps = int(num_training_steps * WARMUP_RATIO)
|
| 252 |
+
|
| 253 |
+
# Logging frequency
|
| 254 |
+
steps_per_epoch = math.ceil(len(train_dataset) / total_train_batch_size)
|
| 255 |
+
LOGGING_STEPS = max(10, steps_per_epoch // 15)
|
| 256 |
+
SAVE_STEPS = max(50, steps_per_epoch // 10)
|
| 257 |
+
|
| 258 |
+
training_args = TrainingArguments(
|
| 259 |
+
output_dir=OUTPUT_TRAINING_DIR,
|
| 260 |
+
num_train_epochs=NUM_EPOCHS,
|
| 261 |
+
per_device_train_batch_size=BATCH_SIZE_PER_DEVICE,
|
| 262 |
+
gradient_accumulation_steps=GRAD_ACCUMULATION_STEPS,
|
| 263 |
+
optim=OPTIMIZER,
|
| 264 |
+
logging_dir=LOGGING_DIR,
|
| 265 |
+
logging_strategy="steps",
|
| 266 |
+
logging_steps=LOGGING_STEPS,
|
| 267 |
+
save_strategy="steps",
|
| 268 |
+
save_steps=SAVE_STEPS,
|
| 269 |
+
save_total_limit=2,
|
| 270 |
+
learning_rate=LEARNING_RATE,
|
| 271 |
+
weight_decay=WEIGHT_DECAY,
|
| 272 |
+
warmup_steps=num_warmup_steps,
|
| 273 |
+
lr_scheduler_type=LR_SCHEDULER,
|
| 274 |
+
report_to="tensorboard",
|
| 275 |
+
fp16=False,
|
| 276 |
+
bf16=True if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else False,
|
| 277 |
+
gradient_checkpointing=True,
|
| 278 |
+
gradient_checkpointing_kwargs={'use_reentrant': False},
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
trainer = Trainer(
|
| 282 |
+
model=model_to_train,
|
| 283 |
+
args=training_args,
|
| 284 |
+
train_dataset=train_dataset,
|
| 285 |
+
data_collator=seq2seq_causal_collator,
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
progress(0.5, desc="Starting training...")
|
| 289 |
+
# Clear cache before starting
|
| 290 |
+
gc.collect()
|
| 291 |
+
if torch.cuda.is_available():
|
| 292 |
+
torch.cuda.empty_cache()
|
| 293 |
+
|
| 294 |
+
try:
|
| 295 |
+
train_result = trainer.train()
|
| 296 |
+
|
| 297 |
+
progress(0.9, desc="Saving model...")
|
| 298 |
+
# Save final model and training state
|
| 299 |
+
final_save_path = os.path.join(training_args.output_dir, "final_checkpoint")
|
| 300 |
+
trainer.save_model(final_save_path)
|
| 301 |
+
trainer.save_state()
|
| 302 |
+
|
| 303 |
+
# Log metrics
|
| 304 |
+
metrics = train_result.metrics
|
| 305 |
+
trainer.log_metrics("train", metrics)
|
| 306 |
+
trainer.save_metrics("train", metrics)
|
| 307 |
+
|
| 308 |
+
progress(1.0, desc="Training complete!")
|
| 309 |
+
return f"Training completed successfully. Model saved to {final_save_path}"
|
| 310 |
+
|
| 311 |
+
except Exception as e:
|
| 312 |
+
return f"An error occurred during training: {str(e)}"
|
| 313 |
+
|
| 314 |
+
# Create Gradio interface
|
| 315 |
+
def create_ui():
|
| 316 |
+
with gr.Blocks() as demo:
|
| 317 |
+
gr.Markdown("# Fine-tune LLaMA 3 8B with QLoRA")
|
| 318 |
+
|
| 319 |
+
with gr.Tab("Training"):
|
| 320 |
+
train_button = gr.Button("Start Fine-tuning")
|
| 321 |
+
result_text = gr.Textbox(label="Training Results", interactive=False)
|
| 322 |
+
|
| 323 |
+
train_button.click(train_model, outputs=result_text)
|
| 324 |
+
|
| 325 |
+
with gr.Tab("About"):
|
| 326 |
+
gr.Markdown("""
|
| 327 |
+
## Information
|
| 328 |
+
This is a Hugging Face Space version of the original Google Colab notebook.
|
| 329 |
+
|
| 330 |
+
It fine-tunes a quantized LLaMA 3 8B model using QLoRA on podcast dialogue data.
|
| 331 |
+
|
| 332 |
+
### Model
|
| 333 |
+
- Base Model: {YOUR_HF_USERNAME}/{MODEL_REPO_NAME}
|
| 334 |
+
- Using 4-bit quantization with LoRA adapters
|
| 335 |
+
|
| 336 |
+
### Dataset
|
| 337 |
+
- Custom dataset: {YOUR_HF_USERNAME}/{DATASET_REPO_NAME}
|
| 338 |
+
- Contains podcast dialogue pairs processed for training
|
| 339 |
+
|
| 340 |
+
### Training Setup
|
| 341 |
+
- QLoRA fine-tuning
|
| 342 |
+
- Epochs: {NUM_EPOCHS}
|
| 343 |
+
- Batch size: {BATCH_SIZE_PER_DEVICE} with {GRAD_ACCUMULATION_STEPS} gradient accumulation steps
|
| 344 |
+
- Learning rate: {LEARNING_RATE}
|
| 345 |
+
""".format(
|
| 346 |
+
YOUR_HF_USERNAME=YOUR_HF_USERNAME,
|
| 347 |
+
MODEL_REPO_NAME=MODEL_REPO_NAME,
|
| 348 |
+
DATASET_REPO_NAME=DATASET_REPO_NAME,
|
| 349 |
+
NUM_EPOCHS=NUM_EPOCHS,
|
| 350 |
+
BATCH_SIZE_PER_DEVICE=BATCH_SIZE_PER_DEVICE,
|
| 351 |
+
GRAD_ACCUMULATION_STEPS=GRAD_ACCUMULATION_STEPS,
|
| 352 |
+
LEARNING_RATE=LEARNING_RATE
|
| 353 |
+
))
|
| 354 |
+
|
| 355 |
+
return demo
|
| 356 |
+
|
| 357 |
+
# Main entry point
|
| 358 |
+
if __name__ == "__main__":
|
| 359 |
+
# Install dependencies first if needed
|
| 360 |
+
# !pip install -q -U transformers accelerate bitsandbytes peft torch datasets huggingface_hub gradio
|
| 361 |
+
|
| 362 |
+
# Create and launch the UI
|
| 363 |
+
demo = create_ui()
|
| 364 |
+
demo.launch()
|