Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -298,7 +298,7 @@ def load_model():
|
|
| 298 |
log.append(f"LoRA rank: 8, alpha: 16 (optimized for 1B model)")
|
| 299 |
model_to_train.print_trainable_parameters()
|
| 300 |
|
| 301 |
-
return model, tokenizer
|
| 302 |
|
| 303 |
def load_dataset():
|
| 304 |
# --- Download the dataset repository files ---
|
|
@@ -670,77 +670,108 @@ def train_model(
|
|
| 670 |
sample_data = torch.load(sample_file)
|
| 671 |
log.append(f"Sample data type: {type(sample_data)}")
|
| 672 |
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 680 |
|
| 681 |
-
#
|
| 682 |
input_ids_list = []
|
| 683 |
labels_list = []
|
| 684 |
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
# If none of these patterns match, try to figure out the structure
|
| 703 |
else:
|
| 704 |
-
log.append(f"
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
input_ids_list.append(data[keys[0]])
|
| 709 |
-
labels_list.append(data[keys[1]])
|
| 710 |
-
# Handling tuple/list structure - the original expected format
|
| 711 |
-
elif isinstance(data, (tuple, list)) and len(data) >= 2:
|
| 712 |
-
input_ids_list.append(data[0])
|
| 713 |
-
labels_list.append(data[1])
|
| 714 |
-
else:
|
| 715 |
-
log.append(f"Unsupported data format in {pt_file}: {type(data)}")
|
| 716 |
|
| 717 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 718 |
|
| 719 |
-
|
| 720 |
-
processed_inputs = []
|
| 721 |
-
processed_labels = []
|
| 722 |
|
|
|
|
|
|
|
| 723 |
for i, (inputs, labels) in enumerate(zip(input_ids_list, labels_list)):
|
| 724 |
-
#
|
| 725 |
-
if not isinstance(inputs, torch.Tensor):
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
labels = torch.tensor(labels)
|
| 729 |
-
|
| 730 |
-
# Ensure they're integer tensors
|
| 731 |
-
inputs = inputs.long()
|
| 732 |
-
labels = labels.long()
|
| 733 |
-
|
| 734 |
-
# Append to lists, converting to standard Python lists for the Dataset
|
| 735 |
-
processed_inputs.append(inputs.tolist())
|
| 736 |
-
processed_labels.append(labels.tolist())
|
| 737 |
|
| 738 |
-
#
|
| 739 |
-
|
| 740 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 741 |
|
| 742 |
# Create the dataset
|
| 743 |
-
log.append("Creating dataset from
|
|
|
|
|
|
|
|
|
|
|
|
|
| 744 |
dataset = Dataset.from_dict({
|
| 745 |
"input_ids": processed_inputs,
|
| 746 |
"labels": processed_labels
|
|
@@ -754,6 +785,7 @@ def train_model(
|
|
| 754 |
log.append(f"Created dataset with {len(train_dataset)} training examples and {len(val_dataset)} validation examples")
|
| 755 |
|
| 756 |
except Exception as e:
|
|
|
|
| 757 |
error_msg = f"Error processing dataset: {str(e)}\n{traceback.format_exc()}"
|
| 758 |
log.append(error_msg)
|
| 759 |
return "\n".join(log)
|
|
|
|
| 298 |
log.append(f"LoRA rank: 8, alpha: 16 (optimized for 1B model)")
|
| 299 |
model_to_train.print_trainable_parameters()
|
| 300 |
|
| 301 |
+
return model, tokenizer
|
| 302 |
|
| 303 |
def load_dataset():
|
| 304 |
# --- Download the dataset repository files ---
|
|
|
|
| 670 |
sample_data = torch.load(sample_file)
|
| 671 |
log.append(f"Sample data type: {type(sample_data)}")
|
| 672 |
|
| 673 |
+
# Function to recursively explore the data structure
|
| 674 |
+
def explore_data(data, prefix=""):
|
| 675 |
+
if isinstance(data, (list, tuple)):
|
| 676 |
+
log.append(f"{prefix}List/Tuple with {len(data)} items")
|
| 677 |
+
if len(data) > 0:
|
| 678 |
+
explore_data(data[0], prefix + " [0]: ")
|
| 679 |
+
elif isinstance(data, dict):
|
| 680 |
+
log.append(f"{prefix}Dictionary with keys: {list(data.keys())}")
|
| 681 |
+
for key in list(data.keys())[:2]: # Look at first 2 keys
|
| 682 |
+
explore_data(data[key], prefix + f" ['{key}']: ")
|
| 683 |
+
elif isinstance(data, torch.Tensor):
|
| 684 |
+
log.append(f"{prefix}Tensor with shape {data.shape} and dtype {data.dtype}")
|
| 685 |
+
else:
|
| 686 |
+
log.append(f"{prefix}Other type: {type(data)}")
|
| 687 |
+
|
| 688 |
+
# Explore the sample data
|
| 689 |
+
explore_data(sample_data, "Sample data: ")
|
| 690 |
+
|
| 691 |
+
# Function to extract tensor data from complex structures
|
| 692 |
+
def extract_tensor_data(data):
|
| 693 |
+
if isinstance(data, torch.Tensor):
|
| 694 |
+
return data
|
| 695 |
+
elif isinstance(data, (list, tuple)) and len(data) > 0:
|
| 696 |
+
if all(isinstance(item, (int, float)) for item in data):
|
| 697 |
+
return torch.tensor(data)
|
| 698 |
+
# For lists of tensors/complex structures, use the first item
|
| 699 |
+
return extract_tensor_data(data[0])
|
| 700 |
+
elif isinstance(data, dict):
|
| 701 |
+
# Try common keys for input data
|
| 702 |
+
for key in ['input_ids', 'prompt', 'source', 'inputs', 'data']:
|
| 703 |
+
if key in data:
|
| 704 |
+
return extract_tensor_data(data[key])
|
| 705 |
+
# If none found, use the first key
|
| 706 |
+
if len(data) > 0:
|
| 707 |
+
return extract_tensor_data(next(iter(data.values())))
|
| 708 |
+
return None
|
| 709 |
|
| 710 |
+
# Process all files
|
| 711 |
input_ids_list = []
|
| 712 |
labels_list = []
|
| 713 |
|
| 714 |
+
# Capture any errors for later analysis
|
| 715 |
+
file_errors = []
|
| 716 |
+
|
| 717 |
+
for i, pt_file in enumerate(tqdm(pt_files, desc="Loading .pt files")):
|
| 718 |
+
try:
|
| 719 |
+
data = torch.load(pt_file)
|
| 720 |
+
|
| 721 |
+
if isinstance(data, (list, tuple)) and len(data) >= 2:
|
| 722 |
+
# Standard format: list/tuple with [input, label]
|
| 723 |
+
input_tensor = extract_tensor_data(data[0])
|
| 724 |
+
label_tensor = extract_tensor_data(data[1])
|
| 725 |
+
|
| 726 |
+
if input_tensor is not None and label_tensor is not None:
|
| 727 |
+
input_ids_list.append(input_tensor)
|
| 728 |
+
labels_list.append(label_tensor)
|
| 729 |
+
else:
|
| 730 |
+
file_errors.append(f"Could not extract tensors from {pt_file}")
|
|
|
|
| 731 |
else:
|
| 732 |
+
log.append(f"File {pt_file} has unexpected format. Skipping.")
|
| 733 |
+
file_errors.append(f"Unexpected format in {pt_file}: {type(data)}")
|
| 734 |
+
except Exception as e:
|
| 735 |
+
file_errors.append(f"Error processing file {pt_file}: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 736 |
|
| 737 |
+
# Log errors if any
|
| 738 |
+
if file_errors:
|
| 739 |
+
log.append(f"Encountered {len(file_errors)} errors during file processing:")
|
| 740 |
+
for i, error in enumerate(file_errors[:5]): # Log first 5 errors
|
| 741 |
+
log.append(f" Error {i+1}: {error}")
|
| 742 |
+
if len(file_errors) > 5:
|
| 743 |
+
log.append(f" ...and {len(file_errors) - 5} more errors")
|
| 744 |
|
| 745 |
+
log.append(f"Successfully processed {len(input_ids_list)} input/label pairs")
|
|
|
|
|
|
|
| 746 |
|
| 747 |
+
# Verify all tensors are valid
|
| 748 |
+
valid_pairs = []
|
| 749 |
for i, (inputs, labels) in enumerate(zip(input_ids_list, labels_list)):
|
| 750 |
+
# Perform safety checks on tensors
|
| 751 |
+
if not isinstance(inputs, torch.Tensor) or not isinstance(labels, torch.Tensor):
|
| 752 |
+
log.append(f"Pair {i}: Invalid tensor types - skipping")
|
| 753 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 754 |
|
| 755 |
+
# Ensure tensors contain integers
|
| 756 |
+
try:
|
| 757 |
+
inputs = inputs.long()
|
| 758 |
+
labels = labels.long()
|
| 759 |
+
|
| 760 |
+
# Convert to lists and add to valid pairs
|
| 761 |
+
valid_pairs.append((inputs.tolist(), labels.tolist()))
|
| 762 |
+
|
| 763 |
+
# Log some diagnostics for the first few pairs
|
| 764 |
+
if i < 3:
|
| 765 |
+
log.append(f"Pair {i}: Input shape: {inputs.shape}, Label shape: {labels.shape}")
|
| 766 |
+
except Exception as e:
|
| 767 |
+
log.append(f"Error converting tensors for pair {i}: {str(e)}")
|
| 768 |
|
| 769 |
# Create the dataset
|
| 770 |
+
log.append(f"Creating dataset from {len(valid_pairs)} valid pairs...")
|
| 771 |
+
|
| 772 |
+
processed_inputs = [pair[0] for pair in valid_pairs]
|
| 773 |
+
processed_labels = [pair[1] for pair in valid_pairs]
|
| 774 |
+
|
| 775 |
dataset = Dataset.from_dict({
|
| 776 |
"input_ids": processed_inputs,
|
| 777 |
"labels": processed_labels
|
|
|
|
| 785 |
log.append(f"Created dataset with {len(train_dataset)} training examples and {len(val_dataset)} validation examples")
|
| 786 |
|
| 787 |
except Exception as e:
|
| 788 |
+
import traceback
|
| 789 |
error_msg = f"Error processing dataset: {str(e)}\n{traceback.format_exc()}"
|
| 790 |
log.append(error_msg)
|
| 791 |
return "\n".join(log)
|