Spaces:
Sleeping
Sleeping
File size: 1,495 Bytes
e73e2a2 3a2cd79 e73e2a2 3a2cd79 e6fe7fe 3a2cd79 e73e2a2 eaa1a24 2d50ea0 e3fbc7a e73e2a2 3a2cd79 123f969 abc9bfa 123f969 abc9bfa 2d50ea0 b26c2e5 abc9bfa b26c2e5 abc9bfa b26c2e5 123f969 2d50ea0 b26c2e5 2d50ea0 123f969 b26c2e5 6ac5675 b26c2e5 f8b37ec 2d50ea0 e3fbc7a b26c2e5 e3fbc7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import os
import cv2
import numpy as np
import gradio as gr
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
from huggingface_hub import hf_hub_download
# Load models
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
xcp_model = load_model(xcp_path)
eff_model = load_model(eff_path)
def predict(image_path):
image = cv2.imread(image_path)
if image is None:
return {"label": "Invalid image"}
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
xcp_img = cv2.resize(image, (299, 299))
eff_img = cv2.resize(image, (224, 224))
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
avg_pred = (xcp_pred + eff_pred) / 2
label = "Real" if avg_pred > 0.5 else "Fake"
return {"label": label}
iface = gr.Interface(
fn=predict,
inputs=gr.Image(type="filepath", label="image_path"),
outputs=gr.JSON(label="output"),
allow_flagging="never"
)
iface.launch()
|