File size: 1,495 Bytes
e73e2a2
 
3a2cd79
e73e2a2
3a2cd79
e6fe7fe
3a2cd79
 
e73e2a2
eaa1a24
2d50ea0
e3fbc7a
 
e73e2a2
 
3a2cd79
123f969
abc9bfa
 
123f969
abc9bfa
 
2d50ea0
b26c2e5
 
abc9bfa
b26c2e5
 
abc9bfa
b26c2e5
 
123f969
2d50ea0
b26c2e5
2d50ea0
123f969
b26c2e5
6ac5675
b26c2e5
f8b37ec
2d50ea0
e3fbc7a
b26c2e5
 
e3fbc7a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import cv2
import numpy as np
import gradio as gr
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
from huggingface_hub import hf_hub_download

# Load models
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
xcp_model = load_model(xcp_path)
eff_model = load_model(eff_path)

def predict(image_path):
    image = cv2.imread(image_path)
    if image is None:
        return {"label": "Invalid image"}

    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    xcp_img = cv2.resize(image, (299, 299))
    eff_img = cv2.resize(image, (224, 224))

    xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
    eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]

    xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
    eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]

    avg_pred = (xcp_pred + eff_pred) / 2
    label = "Real" if avg_pred > 0.5 else "Fake"

    return {"label": label}

iface = gr.Interface(
    fn=predict,
    inputs=gr.Image(type="filepath", label="image_path"),
    outputs=gr.JSON(label="output"),
    allow_flagging="never"
)

iface.launch()