kyrilloswahid commited on
Commit
b26c2e5
·
verified ·
1 Parent(s): fb8f862

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -29
app.py CHANGED
@@ -2,43 +2,40 @@ import os
2
  import cv2
3
  import numpy as np
4
  import gradio as gr
5
- from PIL import Image
6
  import tensorflow as tf
7
  from tensorflow.keras.models import load_model
8
  from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
9
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
10
  from huggingface_hub import hf_hub_download
11
 
12
- # Load models once
13
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
14
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
15
  xcp_model = load_model(xcp_path)
16
  eff_model = load_model(eff_path)
17
 
18
- def predict(image: Image.Image) -> str:
19
- try:
20
- image_np = np.array(image.convert("RGB"))
21
- xcp_img = cv2.resize(image_np, (299, 299))
22
- eff_img = cv2.resize(image_np, (224, 224))
23
-
24
- xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
25
- eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
26
-
27
- xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
28
- eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
29
-
30
- avg_pred = (xcp_pred + eff_pred) / 2
31
- return "Real" if avg_pred > 0.5 else "Fake"
32
- except Exception as e:
33
- return "Error: " + str(e)
34
-
35
- # ✅ Use Blocks instead of Interface to avoid schema bugs
36
- with gr.Blocks() as demo:
37
- with gr.Row():
38
- image_input = gr.Image(type="pil", label="Upload Image")
39
- with gr.Row():
40
- output = gr.Textbox(label="Prediction")
41
- image_input.change(fn=predict, inputs=image_input, outputs=output)
42
-
43
- if __name__ == "__main__":
44
- demo.launch()
 
2
  import cv2
3
  import numpy as np
4
  import gradio as gr
 
5
  import tensorflow as tf
6
  from tensorflow.keras.models import load_model
7
  from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
8
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
9
  from huggingface_hub import hf_hub_download
10
 
11
+ # Download and load models
12
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
13
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
14
  xcp_model = load_model(xcp_path)
15
  eff_model = load_model(eff_path)
16
 
17
+ def predict(image):
18
+ # Use the full image directly (no face extraction)
19
+ xcp_img = cv2.resize(image, (299, 299))
20
+ eff_img = cv2.resize(image, (224, 224))
21
+
22
+ xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
23
+ eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
24
+
25
+ xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
26
+ eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
27
+
28
+ avg_pred = (xcp_pred + eff_pred) / 2
29
+ label = "Real" if avg_pred > 0.5 else "Fake"
30
+
31
+ return label
32
+
33
+ interface = gr.Interface(
34
+ fn=predict,
35
+ inputs=gr.Image(type="numpy", label="Upload Image"),
36
+ outputs=gr.Label(label="Prediction"),
37
+ title="Deepfake Image Detector",
38
+ description="Upload a full image. The model classifies it as real or fake."
39
+ )
40
+
41
+ interface.launch()