Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,41 +9,36 @@ from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
|
|
9 |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
|
12 |
-
# Load models
|
13 |
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
|
14 |
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
|
15 |
xcp_model = load_model(xcp_path)
|
16 |
eff_model = load_model(eff_path)
|
17 |
|
18 |
-
def predict(
|
19 |
try:
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
# Resize and preprocess
|
24 |
-
xcp_img = cv2.resize(image, (299, 299))
|
25 |
-
eff_img = cv2.resize(image, (224, 224))
|
26 |
|
27 |
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
|
28 |
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
|
29 |
|
30 |
-
# Predict
|
31 |
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
|
32 |
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
|
33 |
-
avg_pred = (xcp_pred + eff_pred) / 2
|
34 |
|
|
|
35 |
return "Real" if avg_pred > 0.5 else "Fake"
|
36 |
except Exception as e:
|
37 |
-
return
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
)
|
47 |
|
48 |
if __name__ == "__main__":
|
49 |
demo.launch()
|
|
|
9 |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
|
12 |
+
# Load models once
|
13 |
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
|
14 |
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
|
15 |
xcp_model = load_model(xcp_path)
|
16 |
eff_model = load_model(eff_path)
|
17 |
|
18 |
+
def predict(image: Image.Image) -> str:
|
19 |
try:
|
20 |
+
image_np = np.array(image.convert("RGB"))
|
21 |
+
xcp_img = cv2.resize(image_np, (299, 299))
|
22 |
+
eff_img = cv2.resize(image_np, (224, 224))
|
|
|
|
|
|
|
23 |
|
24 |
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
|
25 |
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
|
26 |
|
|
|
27 |
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
|
28 |
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
|
|
|
29 |
|
30 |
+
avg_pred = (xcp_pred + eff_pred) / 2
|
31 |
return "Real" if avg_pred > 0.5 else "Fake"
|
32 |
except Exception as e:
|
33 |
+
return "Error: " + str(e)
|
34 |
+
|
35 |
+
# ✅ Use Blocks instead of Interface to avoid schema bugs
|
36 |
+
with gr.Blocks() as demo:
|
37 |
+
with gr.Row():
|
38 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
39 |
+
with gr.Row():
|
40 |
+
output = gr.Textbox(label="Prediction")
|
41 |
+
image_input.change(fn=predict, inputs=image_input, outputs=output)
|
|
|
42 |
|
43 |
if __name__ == "__main__":
|
44 |
demo.launch()
|