Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import os
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
|
|
5 |
import tensorflow as tf
|
6 |
from tensorflow.keras.models import load_model
|
7 |
from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
|
@@ -14,31 +15,33 @@ eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", fi
|
|
14 |
xcp_model = load_model(xcp_path)
|
15 |
eff_model = load_model(eff_path)
|
16 |
|
17 |
-
def predict(
|
18 |
try:
|
19 |
-
#
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
22 |
|
23 |
-
# Preprocess for each model
|
24 |
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
|
25 |
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
|
26 |
|
27 |
# Predict
|
28 |
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
|
29 |
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
|
30 |
-
|
31 |
avg_pred = (xcp_pred + eff_pred) / 2
|
32 |
-
return "Real" if avg_pred > 0.5 else "Fake"
|
33 |
|
|
|
34 |
except Exception as e:
|
35 |
-
return "Error:
|
36 |
|
37 |
-
# ✅ Use literal type-safe components
|
38 |
demo = gr.Interface(
|
39 |
fn=predict,
|
40 |
-
inputs=gr.Image(type="
|
41 |
-
outputs=gr.Textbox(),
|
|
|
|
|
42 |
allow_flagging="never"
|
43 |
)
|
44 |
|
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
import tensorflow as tf
|
7 |
from tensorflow.keras.models import load_model
|
8 |
from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
|
|
|
15 |
xcp_model = load_model(xcp_path)
|
16 |
eff_model = load_model(eff_path)
|
17 |
|
18 |
+
def predict(image_pil: Image.Image) -> str:
|
19 |
try:
|
20 |
+
# Convert PIL to numpy
|
21 |
+
image = np.array(image_pil.convert("RGB"))
|
22 |
+
|
23 |
+
# Resize and preprocess
|
24 |
+
xcp_img = cv2.resize(image, (299, 299))
|
25 |
+
eff_img = cv2.resize(image, (224, 224))
|
26 |
|
|
|
27 |
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
|
28 |
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
|
29 |
|
30 |
# Predict
|
31 |
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
|
32 |
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
|
|
|
33 |
avg_pred = (xcp_pred + eff_pred) / 2
|
|
|
34 |
|
35 |
+
return "Real" if avg_pred > 0.5 else "Fake"
|
36 |
except Exception as e:
|
37 |
+
return f"Error: {str(e)}"
|
38 |
|
|
|
39 |
demo = gr.Interface(
|
40 |
fn=predict,
|
41 |
+
inputs=gr.Image(type="pil", label="Upload Image"), # ✅ Use PIL instead of numpy
|
42 |
+
outputs=gr.Textbox(label="Prediction"), # ✅ Safe, schema-compatible
|
43 |
+
title="Deepfake Image Detector",
|
44 |
+
description="Upload a full image. The model classifies it as real or fake.",
|
45 |
allow_flagging="never"
|
46 |
)
|
47 |
|