kyrilloswahid commited on
Commit
b453465
·
verified ·
1 Parent(s): d719fa7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -14
app.py CHANGED
@@ -8,17 +8,17 @@ from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
8
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
9
  from huggingface_hub import hf_hub_download
10
 
11
- # Download and load models
12
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
13
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
14
  xcp_model = load_model(xcp_path)
15
  eff_model = load_model(eff_path)
16
 
17
- def predict(image):
18
  try:
19
  # Resize input
20
- xcp_img = cv2.resize(image, (299, 299))
21
- eff_img = cv2.resize(image, (224, 224))
22
 
23
  # Preprocess for each model
24
  xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
@@ -29,20 +29,18 @@ def predict(image):
29
  eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
30
 
31
  avg_pred = (xcp_pred + eff_pred) / 2
32
- label = "Real" if avg_pred > 0.5 else "Fake"
33
-
34
- # ✅ Return plain string (must be str type)
35
- return str(label)
36
 
37
  except Exception as e:
38
  return "Error: " + str(e)
39
 
40
- interface = gr.Interface(
 
41
  fn=predict,
42
- inputs=gr.Image(type="numpy", label="Upload Image"),
43
- outputs=gr.Textbox(label="Prediction"), # ✅ Explicit textbox to return a clean str
44
- title="Deepfake Image Detector",
45
- description="Upload a full image. The model classifies it as real or fake."
46
  )
47
 
48
- interface.launch()
 
 
8
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
9
  from huggingface_hub import hf_hub_download
10
 
11
+ # Load models
12
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
13
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
14
  xcp_model = load_model(xcp_path)
15
  eff_model = load_model(eff_path)
16
 
17
+ def predict(img):
18
  try:
19
  # Resize input
20
+ xcp_img = cv2.resize(img, (299, 299))
21
+ eff_img = cv2.resize(img, (224, 224))
22
 
23
  # Preprocess for each model
24
  xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
 
29
  eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
30
 
31
  avg_pred = (xcp_pred + eff_pred) / 2
32
+ return "Real" if avg_pred > 0.5 else "Fake"
 
 
 
33
 
34
  except Exception as e:
35
  return "Error: " + str(e)
36
 
37
+ # Use literal type-safe components
38
+ demo = gr.Interface(
39
  fn=predict,
40
+ inputs=gr.Image(type="numpy"),
41
+ outputs=gr.Textbox(),
42
+ allow_flagging="never"
 
43
  )
44
 
45
+ if __name__ == "__main__":
46
+ demo.launch()