kyrilloswahid commited on
Commit
d719fa7
Β·
verified Β·
1 Parent(s): ce59aac

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -16
app.py CHANGED
@@ -8,36 +8,39 @@ from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
8
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
9
  from huggingface_hub import hf_hub_download
10
 
11
- # Load models
12
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
13
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
14
  xcp_model = load_model(xcp_path)
15
  eff_model = load_model(eff_path)
16
 
17
  def predict(image):
18
- # Resize for each model
19
- xcp_img = cv2.resize(image, (299, 299))
20
- eff_img = cv2.resize(image, (224, 224))
 
21
 
22
- # Preprocess
23
- xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
24
- eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
25
 
26
- # Predict
27
- xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
28
- eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
29
 
30
- avg_pred = (xcp_pred + eff_pred) / 2
31
- label = "Real" if avg_pred > 0.5 else "Fake"
32
 
33
- # βœ… Simplest format: just the label (for gradio_client compatibility)
34
- return label
 
 
 
35
 
36
- # βœ… Output changed from gr.Label β†’ gr.Textbox to avoid JSON schema issues
37
  interface = gr.Interface(
38
  fn=predict,
39
  inputs=gr.Image(type="numpy", label="Upload Image"),
40
- outputs=gr.Textbox(label="Prediction"),
41
  title="Deepfake Image Detector",
42
  description="Upload a full image. The model classifies it as real or fake."
43
  )
 
8
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
9
  from huggingface_hub import hf_hub_download
10
 
11
+ # Download and load models
12
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
13
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
14
  xcp_model = load_model(xcp_path)
15
  eff_model = load_model(eff_path)
16
 
17
  def predict(image):
18
+ try:
19
+ # Resize input
20
+ xcp_img = cv2.resize(image, (299, 299))
21
+ eff_img = cv2.resize(image, (224, 224))
22
 
23
+ # Preprocess for each model
24
+ xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
25
+ eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
26
 
27
+ # Predict
28
+ xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
29
+ eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
30
 
31
+ avg_pred = (xcp_pred + eff_pred) / 2
32
+ label = "Real" if avg_pred > 0.5 else "Fake"
33
 
34
+ # βœ… Return plain string (must be str type)
35
+ return str(label)
36
+
37
+ except Exception as e:
38
+ return "Error: " + str(e)
39
 
 
40
  interface = gr.Interface(
41
  fn=predict,
42
  inputs=gr.Image(type="numpy", label="Upload Image"),
43
+ outputs=gr.Textbox(label="Prediction"), # βœ… Explicit textbox to return a clean str
44
  title="Deepfake Image Detector",
45
  description="Upload a full image. The model classifies it as real or fake."
46
  )