kyrilloswahid commited on
Commit
ce59aac
·
verified ·
1 Parent(s): 617a415

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -4
app.py CHANGED
@@ -8,32 +8,36 @@ from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
8
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
9
  from huggingface_hub import hf_hub_download
10
 
11
- # Download and load models
12
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
13
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
14
  xcp_model = load_model(xcp_path)
15
  eff_model = load_model(eff_path)
16
 
17
  def predict(image):
18
- # Use the full image directly (no face extraction)
19
  xcp_img = cv2.resize(image, (299, 299))
20
  eff_img = cv2.resize(image, (224, 224))
21
 
 
22
  xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
23
  eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
24
 
 
25
  xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
26
  eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
27
 
28
  avg_pred = (xcp_pred + eff_pred) / 2
29
  label = "Real" if avg_pred > 0.5 else "Fake"
30
 
31
- return label
 
32
 
 
33
  interface = gr.Interface(
34
  fn=predict,
35
  inputs=gr.Image(type="numpy", label="Upload Image"),
36
- outputs=gr.Label(label="Prediction"),
37
  title="Deepfake Image Detector",
38
  description="Upload a full image. The model classifies it as real or fake."
39
  )
 
8
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
9
  from huggingface_hub import hf_hub_download
10
 
11
+ # Load models
12
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
13
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
14
  xcp_model = load_model(xcp_path)
15
  eff_model = load_model(eff_path)
16
 
17
  def predict(image):
18
+ # Resize for each model
19
  xcp_img = cv2.resize(image, (299, 299))
20
  eff_img = cv2.resize(image, (224, 224))
21
 
22
+ # Preprocess
23
  xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
24
  eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
25
 
26
+ # Predict
27
  xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
28
  eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
29
 
30
  avg_pred = (xcp_pred + eff_pred) / 2
31
  label = "Real" if avg_pred > 0.5 else "Fake"
32
 
33
+ # ✅ Simplest format: just the label (for gradio_client compatibility)
34
+ return label
35
 
36
+ # ✅ Output changed from gr.Label → gr.Textbox to avoid JSON schema issues
37
  interface = gr.Interface(
38
  fn=predict,
39
  inputs=gr.Image(type="numpy", label="Upload Image"),
40
+ outputs=gr.Textbox(label="Prediction"),
41
  title="Deepfake Image Detector",
42
  description="Upload a full image. The model classifies it as real or fake."
43
  )