Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,32 +8,36 @@ from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
|
|
8 |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
|
11 |
-
#
|
12 |
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
|
13 |
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
|
14 |
xcp_model = load_model(xcp_path)
|
15 |
eff_model = load_model(eff_path)
|
16 |
|
17 |
def predict(image):
|
18 |
-
#
|
19 |
xcp_img = cv2.resize(image, (299, 299))
|
20 |
eff_img = cv2.resize(image, (224, 224))
|
21 |
|
|
|
22 |
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
|
23 |
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
|
24 |
|
|
|
25 |
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
|
26 |
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
|
27 |
|
28 |
avg_pred = (xcp_pred + eff_pred) / 2
|
29 |
label = "Real" if avg_pred > 0.5 else "Fake"
|
30 |
|
31 |
-
|
|
|
32 |
|
|
|
33 |
interface = gr.Interface(
|
34 |
fn=predict,
|
35 |
inputs=gr.Image(type="numpy", label="Upload Image"),
|
36 |
-
outputs=gr.
|
37 |
title="Deepfake Image Detector",
|
38 |
description="Upload a full image. The model classifies it as real or fake."
|
39 |
)
|
|
|
8 |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
|
11 |
+
# Load models
|
12 |
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
|
13 |
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
|
14 |
xcp_model = load_model(xcp_path)
|
15 |
eff_model = load_model(eff_path)
|
16 |
|
17 |
def predict(image):
|
18 |
+
# Resize for each model
|
19 |
xcp_img = cv2.resize(image, (299, 299))
|
20 |
eff_img = cv2.resize(image, (224, 224))
|
21 |
|
22 |
+
# Preprocess
|
23 |
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
|
24 |
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
|
25 |
|
26 |
+
# Predict
|
27 |
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
|
28 |
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
|
29 |
|
30 |
avg_pred = (xcp_pred + eff_pred) / 2
|
31 |
label = "Real" if avg_pred > 0.5 else "Fake"
|
32 |
|
33 |
+
# ✅ Simplest format: just the label (for gradio_client compatibility)
|
34 |
+
return label
|
35 |
|
36 |
+
# ✅ Output changed from gr.Label → gr.Textbox to avoid JSON schema issues
|
37 |
interface = gr.Interface(
|
38 |
fn=predict,
|
39 |
inputs=gr.Image(type="numpy", label="Upload Image"),
|
40 |
+
outputs=gr.Textbox(label="Prediction"),
|
41 |
title="Deepfake Image Detector",
|
42 |
description="Upload a full image. The model classifies it as real or fake."
|
43 |
)
|