Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,51 +8,37 @@ from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
|
|
8 |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
|
11 |
-
#
|
12 |
-
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-
|
13 |
-
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-
|
14 |
xcp_model = load_model(xcp_path)
|
15 |
eff_model = load_model(eff_path)
|
16 |
|
17 |
-
def predict(image_path):
|
18 |
-
# Read the image from file path
|
19 |
image = cv2.imread(image_path)
|
20 |
-
|
21 |
-
# Check if loading failed
|
22 |
if image is None:
|
23 |
-
|
24 |
|
25 |
-
# Convert BGR to RGB (OpenCV loads images in BGR)
|
26 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
27 |
|
28 |
-
# Resize for each model
|
29 |
xcp_img = cv2.resize(image, (299, 299))
|
30 |
eff_img = cv2.resize(image, (224, 224))
|
31 |
|
32 |
-
# Preprocess
|
33 |
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
|
34 |
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
|
35 |
|
36 |
-
# Predict
|
37 |
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
|
38 |
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
|
39 |
-
avg_pred = (xcp_pred + eff_pred) / 2
|
40 |
|
|
|
41 |
label = "Real" if avg_pred > 0.5 else "Fake"
|
42 |
-
|
43 |
-
return {"result": {
|
44 |
-
"label": label,
|
45 |
-
"average": round(avg_pred, 3),
|
46 |
-
"xception": round(xcp_pred, 3),
|
47 |
-
"efficientnet": round(eff_pred, 3)
|
48 |
-
}}
|
49 |
-
|
50 |
|
51 |
iface = gr.Interface(
|
52 |
fn=predict,
|
53 |
-
inputs=gr.Image(type="filepath"),
|
54 |
-
outputs=
|
|
|
55 |
)
|
56 |
|
57 |
-
|
58 |
-
iface.launch()
|
|
|
8 |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
|
11 |
+
# Load models from Hugging Face Hub
|
12 |
+
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
|
13 |
+
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
|
14 |
xcp_model = load_model(xcp_path)
|
15 |
eff_model = load_model(eff_path)
|
16 |
|
17 |
+
def predict(image_path): # receives file path (not array)
|
|
|
18 |
image = cv2.imread(image_path)
|
|
|
|
|
19 |
if image is None:
|
20 |
+
return "Invalid image"
|
21 |
|
|
|
22 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
23 |
|
|
|
24 |
xcp_img = cv2.resize(image, (299, 299))
|
25 |
eff_img = cv2.resize(image, (224, 224))
|
26 |
|
|
|
27 |
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
|
28 |
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
|
29 |
|
|
|
30 |
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
|
31 |
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
|
|
|
32 |
|
33 |
+
avg_pred = (xcp_pred + eff_pred) / 2
|
34 |
label = "Real" if avg_pred > 0.5 else "Fake"
|
35 |
+
return label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
iface = gr.Interface(
|
38 |
fn=predict,
|
39 |
+
inputs=gr.Image(type="filepath", label="image_path"), # <- This must match backend call
|
40 |
+
outputs="text",
|
41 |
+
allow_flagging="never"
|
42 |
)
|
43 |
|
44 |
+
iface.launch()
|
|