Zeyadd-Mostaffa commited on
Commit
e3fbc7a
·
verified ·
1 Parent(s): 6acfb85

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -25
app.py CHANGED
@@ -8,51 +8,37 @@ from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
8
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
9
  from huggingface_hub import hf_hub_download
10
 
11
- # Download and load models
12
- xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
13
- eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
14
  xcp_model = load_model(xcp_path)
15
  eff_model = load_model(eff_path)
16
 
17
- def predict(image_path):
18
- # Read the image from file path
19
  image = cv2.imread(image_path)
20
-
21
- # Check if loading failed
22
  if image is None:
23
- raise ValueError("Failed to load image. Make sure the input is an image file.")
24
 
25
- # Convert BGR to RGB (OpenCV loads images in BGR)
26
  image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
27
 
28
- # Resize for each model
29
  xcp_img = cv2.resize(image, (299, 299))
30
  eff_img = cv2.resize(image, (224, 224))
31
 
32
- # Preprocess
33
  xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
34
  eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
35
 
36
- # Predict
37
  xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
38
  eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
39
- avg_pred = (xcp_pred + eff_pred) / 2
40
 
 
41
  label = "Real" if avg_pred > 0.5 else "Fake"
42
-
43
- return {"result": {
44
- "label": label,
45
- "average": round(avg_pred, 3),
46
- "xception": round(xcp_pred, 3),
47
- "efficientnet": round(eff_pred, 3)
48
- }}
49
-
50
 
51
  iface = gr.Interface(
52
  fn=predict,
53
- inputs=gr.Image(type="filepath"),
54
- outputs=gr.Label(), # just returns a string like "Real"
 
55
  )
56
 
57
-
58
- iface.launch()
 
8
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
9
  from huggingface_hub import hf_hub_download
10
 
11
+ # Load models from Hugging Face Hub
12
+ xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="xception_model.h5")
13
+ eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector_final", filename="efficientnet_model.h5")
14
  xcp_model = load_model(xcp_path)
15
  eff_model = load_model(eff_path)
16
 
17
+ def predict(image_path): # receives file path (not array)
 
18
  image = cv2.imread(image_path)
 
 
19
  if image is None:
20
+ return "Invalid image"
21
 
 
22
  image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
23
 
 
24
  xcp_img = cv2.resize(image, (299, 299))
25
  eff_img = cv2.resize(image, (224, 224))
26
 
 
27
  xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
28
  eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
29
 
 
30
  xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
31
  eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
 
32
 
33
+ avg_pred = (xcp_pred + eff_pred) / 2
34
  label = "Real" if avg_pred > 0.5 else "Fake"
35
+ return label
 
 
 
 
 
 
 
36
 
37
  iface = gr.Interface(
38
  fn=predict,
39
+ inputs=gr.Image(type="filepath", label="image_path"), # <- This must match backend call
40
+ outputs="text",
41
+ allow_flagging="never"
42
  )
43
 
44
+ iface.launch()