Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,83 +1,95 @@
|
|
1 |
-
import
|
|
|
2 |
import numpy as np
|
|
|
3 |
import tensorflow as tf
|
4 |
-
import cv2
|
5 |
from tensorflow.keras.models import load_model
|
6 |
from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
|
7 |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
|
|
|
8 |
from mtcnn import MTCNN
|
9 |
-
import
|
10 |
-
import warnings
|
11 |
-
warnings.filterwarnings("ignore")
|
12 |
|
13 |
-
#
|
14 |
-
|
|
|
15 |
|
16 |
-
# Load models
|
17 |
-
xcp_model = load_model(
|
18 |
-
eff_model = load_model(
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
with tf.GradientTape() as tape:
|
27 |
-
conv_layer = model.get_layer(index=-5).output
|
28 |
-
grad_model = tf.keras.models.Model([model.inputs], [conv_layer, model.output])
|
29 |
conv_outputs, predictions = grad_model(input_tensor)
|
30 |
-
loss = predictions[:, 0]
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
cam = np.maximum(cam, 0)
|
37 |
cam = cam / (cam.max() + 1e-8)
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
superimposed_img = cv2.addWeighted(cv2.cvtColor(img, cv2.COLOR_RGB2BGR), 0.6, heatmap, 0.4, 0)
|
43 |
return superimposed_img
|
44 |
|
45 |
-
# Face detector
|
46 |
-
detector = MTCNN()
|
47 |
-
|
48 |
-
def detect_face(image):
|
49 |
-
faces = detector.detect_faces(image)
|
50 |
-
if not faces:
|
51 |
-
raise ValueError("No face detected.")
|
52 |
-
x, y, w, h = faces[0]['box']
|
53 |
-
return image[y:y+h, x:x+w]
|
54 |
-
|
55 |
def predict(image):
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
xcp_img = cv2.resize(face, (299, 299))
|
60 |
-
eff_img = cv2.resize(face, (224, 224))
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
|
|
70 |
|
71 |
-
|
|
|
72 |
|
73 |
-
|
74 |
-
except Exception as e:
|
75 |
-
return "خطأ", "خطأ"
|
76 |
|
77 |
-
gr.Interface(
|
78 |
fn=predict,
|
79 |
-
inputs=gr.Image(type="numpy", label="
|
80 |
-
outputs=[
|
|
|
|
|
|
|
81 |
title="Deepfake Image Detector (with Grad-CAM)",
|
82 |
description="Upload an image. We detect the face, classify using an ensemble (Xception + EfficientNetB4), and explain the prediction using Grad-CAM on Xception."
|
83 |
-
)
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
import tensorflow as tf
|
|
|
6 |
from tensorflow.keras.models import load_model
|
7 |
from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
|
8 |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
from mtcnn import MTCNN
|
11 |
+
import matplotlib.pyplot as plt
|
|
|
|
|
12 |
|
13 |
+
# Download models
|
14 |
+
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
|
15 |
+
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
|
16 |
|
17 |
+
# Load models
|
18 |
+
xcp_model = load_model(xcp_path)
|
19 |
+
eff_model = load_model(eff_path)
|
20 |
|
21 |
+
# Face detector
|
22 |
+
detector = MTCNN()
|
23 |
+
|
24 |
+
def extract_face(image):
|
25 |
+
faces = detector.detect_faces(image)
|
26 |
+
if not faces:
|
27 |
+
return None
|
28 |
+
x, y, w, h = faces[0]['box']
|
29 |
+
x, y = max(0, x), max(0, y)
|
30 |
+
return image[y:y+h, x:x+w]
|
31 |
+
|
32 |
+
def grad_cam(model, image, size, preprocess_fn):
|
33 |
+
img = cv2.resize(image, size)
|
34 |
+
input_tensor = preprocess_fn(img.astype(np.float32))[np.newaxis, ...]
|
35 |
+
|
36 |
+
grad_model = tf.keras.models.Model(
|
37 |
+
[model.inputs], [model.get_layer(index=-1).output, model.output]
|
38 |
+
)
|
39 |
|
40 |
with tf.GradientTape() as tape:
|
|
|
|
|
41 |
conv_outputs, predictions = grad_model(input_tensor)
|
42 |
+
loss = predictions[:, 0] # Assuming binary classification
|
43 |
+
|
44 |
+
grads = tape.gradient(loss, conv_outputs)[0]
|
45 |
+
conv_outputs = conv_outputs[0]
|
46 |
|
47 |
+
weights = tf.reduce_mean(grads, axis=(0, 1))
|
48 |
+
cam = np.zeros(conv_outputs.shape[:2], dtype=np.float32)
|
49 |
+
for i, w in enumerate(weights):
|
50 |
+
cam += w * conv_outputs[:, :, i]
|
51 |
|
52 |
cam = np.maximum(cam, 0)
|
53 |
cam = cam / (cam.max() + 1e-8)
|
54 |
+
heatmap = cv2.resize(cam, size)
|
55 |
+
heatmap = np.uint8(255 * heatmap)
|
56 |
+
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
|
57 |
+
superimposed_img = cv2.addWeighted(cv2.resize(img, size), 0.6, heatmap, 0.4, 0)
|
|
|
58 |
return superimposed_img
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def predict(image):
|
61 |
+
face = extract_face(image)
|
62 |
+
if face is None:
|
63 |
+
return "No face detected", None
|
|
|
|
|
64 |
|
65 |
+
# Xception
|
66 |
+
xcp_img = cv2.resize(face, (299, 299))
|
67 |
+
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
|
68 |
+
xcp_pred = xcp_model.predict(xcp_tensor)[0][0]
|
69 |
|
70 |
+
# EfficientNet
|
71 |
+
eff_img = cv2.resize(face, (224, 224))
|
72 |
+
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
|
73 |
+
eff_pred = eff_model.predict(eff_tensor)[0][0]
|
74 |
|
75 |
+
# Ensemble average
|
76 |
+
avg_pred = (xcp_pred + eff_pred) / 2
|
77 |
+
label = "Fake" if avg_pred > 0.5 else "Real"
|
78 |
|
79 |
+
# Grad-CAM on Xception
|
80 |
+
cam_img = grad_cam(xcp_model, face, (299, 299), xcp_pre)
|
81 |
|
82 |
+
return label, cam_img
|
|
|
|
|
83 |
|
84 |
+
interface = gr.Interface(
|
85 |
fn=predict,
|
86 |
+
inputs=gr.Image(type="numpy", label="image"),
|
87 |
+
outputs=[
|
88 |
+
gr.Label(label="Prediction"),
|
89 |
+
gr.Image(type="numpy", label="Grad-CAM")
|
90 |
+
],
|
91 |
title="Deepfake Image Detector (with Grad-CAM)",
|
92 |
description="Upload an image. We detect the face, classify using an ensemble (Xception + EfficientNetB4), and explain the prediction using Grad-CAM on Xception."
|
93 |
+
)
|
94 |
+
|
95 |
+
interface.launch()
|