Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,92 +1,83 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import cv2
|
4 |
import tensorflow as tf
|
5 |
-
|
6 |
-
from tensorflow.keras.
|
7 |
from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
|
8 |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
|
9 |
-
from
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
|
14 |
-
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
|
15 |
-
xcp_model = load_model(xcp_path)
|
16 |
-
eff_model = load_model(eff_path)
|
17 |
-
|
18 |
-
# Face detection using OpenCV
|
19 |
-
def detect_face_opencv(pil_image):
|
20 |
-
cv_img = np.array(pil_image.convert("RGB"))
|
21 |
-
cv_img = cv_img[:, :, ::-1] # RGB to BGR
|
22 |
-
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
23 |
-
gray = cv2.cvtColor(cv_img, cv2.COLOR_BGR2GRAY)
|
24 |
-
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=4)
|
25 |
-
if len(faces) == 0:
|
26 |
-
return pil_image # fallback to original
|
27 |
-
(x, y, w, h) = max(faces, key=lambda b: b[2]*b[3])
|
28 |
-
return pil_image.crop((x, y, x+w, y+h))
|
29 |
-
|
30 |
-
def grad_cam(model, img, size, preprocess_func):
|
31 |
-
img_resized = img.resize(size)
|
32 |
-
x = img_to_array(img_resized)
|
33 |
-
x = np.expand_dims(x, axis=0)
|
34 |
-
x = preprocess_func(x)
|
35 |
-
x_tensor = tf.convert_to_tensor(x)
|
36 |
-
|
37 |
-
grad_model = Model([model.inputs], [model.layers[-3].output, model.output])
|
38 |
-
with tf.GradientTape() as tape:
|
39 |
-
conv_outputs, predictions = grad_model(x_tensor)
|
40 |
-
loss = predictions[:, 0]
|
41 |
-
grads = tape.gradient(loss, conv_outputs)
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
cam = cam / tf.reduce_max(cam + tf.keras.backend.epsilon())
|
46 |
-
cam = cam.numpy() # ✅ convert to numpy before resizing
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
58 |
|
|
|
|
|
|
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
return
|
68 |
|
69 |
-
# Prediction function
|
70 |
def predict(image):
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
ensemble_prob = (xcp_pred + eff_pred) / 2
|
79 |
|
80 |
-
|
81 |
-
cam_img = grad_cam(xcp_model, face, (299, 299), xcp_pre)
|
82 |
|
83 |
-
|
|
|
|
|
84 |
|
85 |
-
# Gradio UI
|
86 |
gr.Interface(
|
87 |
fn=predict,
|
88 |
-
inputs=gr.Image(type="
|
89 |
-
outputs=["
|
90 |
title="Deepfake Image Detector (with Grad-CAM)",
|
91 |
description="Upload an image. We detect the face, classify using an ensemble (Xception + EfficientNetB4), and explain the prediction using Grad-CAM on Xception."
|
92 |
).launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
3 |
import tensorflow as tf
|
4 |
+
import cv2
|
5 |
+
from tensorflow.keras.models import load_model
|
6 |
from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
|
7 |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
|
8 |
+
from mtcnn import MTCNN
|
9 |
+
import os
|
10 |
+
import warnings
|
11 |
+
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Force TF to suppress log-level warnings
|
14 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
|
|
15 |
|
16 |
+
# Load models from local (downloaded from HF first in app setup)
|
17 |
+
xcp_model = load_model("xception_model.h5")
|
18 |
+
eff_model = load_model("efficientnet_model.h5")
|
19 |
|
20 |
+
# Grad-CAM for Xception
|
21 |
+
def grad_cam(model, img_array, size, preprocess_fn):
|
22 |
+
img = cv2.resize(img_array, size)
|
23 |
+
input_tensor = preprocess_fn(np.expand_dims(img, axis=0).astype(np.float32))
|
24 |
+
input_tensor = tf.convert_to_tensor(input_tensor)
|
25 |
|
26 |
+
with tf.GradientTape() as tape:
|
27 |
+
conv_layer = model.get_layer(index=-5).output
|
28 |
+
grad_model = tf.keras.models.Model([model.inputs], [conv_layer, model.output])
|
29 |
+
conv_outputs, predictions = grad_model(input_tensor)
|
30 |
+
loss = predictions[:, 0]
|
31 |
|
32 |
+
grads = tape.gradient(loss, conv_outputs)
|
33 |
+
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
|
34 |
+
cam = tf.reduce_sum(tf.multiply(pooled_grads, conv_outputs), axis=-1).numpy()[0]
|
35 |
|
36 |
+
cam = np.maximum(cam, 0)
|
37 |
+
cam = cam / (cam.max() + 1e-8)
|
38 |
+
cam = (cam * 255).astype(np.uint8)
|
39 |
+
cam = cam.numpy() if hasattr(cam, 'numpy') else cam
|
40 |
+
cam = cv2.resize(cam, size)
|
41 |
+
heatmap = cv2.applyColorMap(cam, cv2.COLORMAP_JET)
|
42 |
+
superimposed_img = cv2.addWeighted(cv2.cvtColor(img, cv2.COLOR_RGB2BGR), 0.6, heatmap, 0.4, 0)
|
43 |
+
return superimposed_img
|
44 |
|
45 |
+
# Face detector
|
46 |
+
detector = MTCNN()
|
47 |
|
48 |
+
def detect_face(image):
|
49 |
+
faces = detector.detect_faces(image)
|
50 |
+
if not faces:
|
51 |
+
raise ValueError("No face detected.")
|
52 |
+
x, y, w, h = faces[0]['box']
|
53 |
+
return image[y:y+h, x:x+w]
|
54 |
|
|
|
55 |
def predict(image):
|
56 |
+
try:
|
57 |
+
face = detect_face(image)
|
58 |
+
|
59 |
+
xcp_img = cv2.resize(face, (299, 299))
|
60 |
+
eff_img = cv2.resize(face, (224, 224))
|
61 |
+
|
62 |
+
xcp_input = np.expand_dims(xcp_pre(xcp_img.astype(np.float32)), axis=0)
|
63 |
+
eff_input = np.expand_dims(eff_pre(eff_img.astype(np.float32)), axis=0)
|
64 |
|
65 |
+
xcp_pred = xcp_model.predict(xcp_input)[0][0]
|
66 |
+
eff_pred = eff_model.predict(eff_input)[0][0]
|
67 |
|
68 |
+
ensemble_pred = (xcp_pred + eff_pred) / 2
|
69 |
+
label = "Fake" if ensemble_pred > 0.5 else "Real"
|
|
|
70 |
|
71 |
+
cam_img = grad_cam(xcp_model, face, (299, 299), xcp_pre)
|
|
|
72 |
|
73 |
+
return label, cam_img
|
74 |
+
except Exception as e:
|
75 |
+
return "خطأ", "خطأ"
|
76 |
|
|
|
77 |
gr.Interface(
|
78 |
fn=predict,
|
79 |
+
inputs=gr.Image(type="numpy", label="Upload Face Image"),
|
80 |
+
outputs=[gr.Label(label="Prediction"), gr.Image(label="Grad-CAM Explanation")],
|
81 |
title="Deepfake Image Detector (with Grad-CAM)",
|
82 |
description="Upload an image. We detect the face, classify using an ensemble (Xception + EfficientNetB4), and explain the prediction using Grad-CAM on Xception."
|
83 |
).launch()
|