Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -39,23 +39,26 @@ def grad_cam(model, img, size, preprocess_func):
|
|
39 |
conv_outputs, predictions = grad_model(x_tensor)
|
40 |
loss = predictions[:, 0]
|
41 |
grads = tape.gradient(loss, conv_outputs)
|
42 |
-
cam = tf.reduce_mean(grads, axis=-1).numpy()
|
43 |
-
cam = np.squeeze(cam)
|
44 |
|
45 |
-
cam =
|
46 |
-
cam =
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
49 |
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
|
50 |
|
51 |
img_np = np.array(img_resized)
|
52 |
-
if img_np.shape[-1] == 4:
|
53 |
img_np = img_np[:, :, :3]
|
|
|
54 |
superimposed = cv2.addWeighted(img_np, 0.6, heatmap, 0.4, 0)
|
55 |
return Image.fromarray(cv2.cvtColor(superimposed, cv2.COLOR_BGR2RGB))
|
56 |
|
57 |
|
58 |
|
|
|
59 |
# Preprocessing helper
|
60 |
def preprocess(img, size, func):
|
61 |
img = img.resize(size)
|
|
|
39 |
conv_outputs, predictions = grad_model(x_tensor)
|
40 |
loss = predictions[:, 0]
|
41 |
grads = tape.gradient(loss, conv_outputs)
|
|
|
|
|
42 |
|
43 |
+
cam = tf.reduce_mean(grads, axis=-1)[0] # (H, W)
|
44 |
+
cam = tf.maximum(cam, 0)
|
45 |
+
cam = cam / tf.reduce_max(cam + tf.keras.backend.epsilon())
|
46 |
+
cam = cam.numpy() # ✅ convert to numpy before resizing
|
47 |
+
|
48 |
+
cam = cv2.resize(cam, size)
|
49 |
+
heatmap = np.uint8(255 * cam)
|
50 |
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
|
51 |
|
52 |
img_np = np.array(img_resized)
|
53 |
+
if img_np.shape[-1] == 4: # remove alpha if present
|
54 |
img_np = img_np[:, :, :3]
|
55 |
+
|
56 |
superimposed = cv2.addWeighted(img_np, 0.6, heatmap, 0.4, 0)
|
57 |
return Image.fromarray(cv2.cvtColor(superimposed, cv2.COLOR_BGR2RGB))
|
58 |
|
59 |
|
60 |
|
61 |
+
|
62 |
# Preprocessing helper
|
63 |
def preprocess(img, size, func):
|
64 |
img = img.resize(size)
|