File size: 12,486 Bytes
8aedf76 0627288 8aedf76 6227239 94e7ee0 8aedf76 d16663b 6227239 d16663b 6227239 94e7ee0 6227239 d16663b 8aedf76 6227239 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 6227239 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 6227239 8aedf76 6227239 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 0627288 8aedf76 d16663b 29f4bdf 8aedf76 d16663b 8aedf76 6227239 8aedf76 b261572 8aedf76 b261572 d16663b 8aedf76 b261572 d16663b 6227239 d16663b b261572 d16663b b261572 d16663b b261572 d16663b b261572 d16663b 8aedf76 b261572 d16663b 8aedf76 b261572 d16663b 8aedf76 d16663b 8aedf76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import gradio as gr
from PIL import Image
import numpy as np
import cv2
from lang_sam import LangSAM
from color_matcher import ColorMatcher
from color_matcher.normalizer import Normalizer
import torch
import warnings
# Suppress specific warnings if desired
warnings.filterwarnings("ignore", category=UserWarning)
# Device configuration: Use CUDA if available, else CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load the LangSAM model
model = LangSAM() # Use the default model or specify custom checkpoint if necessary
# Note: Removed model.to(device) since LangSAM does not support it
def extract_masks(image_pil, prompts):
"""
Extracts masks for each prompt using the LangSAM model.
Args:
image_pil (PIL.Image): The input image.
prompts (str): Comma-separated prompts for segmentation.
Returns:
dict: A dictionary mapping each prompt to its corresponding binary mask.
"""
prompts_list = [p.strip() for p in prompts.split(',') if p.strip()]
masks_dict = {}
with torch.no_grad(): # Disable gradient computation for inference
for prompt in prompts_list:
# Ensure the model uses the correct device internally
masks, boxes, phrases, logits = model.predict(image_pil, prompt)
if masks is not None and len(masks) > 0:
# Move masks to CPU and convert to numpy
masks_np = masks[0].cpu().numpy()
mask = (masks_np > 0).astype(np.uint8) * 255 # Binary mask
masks_dict[prompt] = mask
return masks_dict
def apply_color_matching(source_img_np, ref_img_np):
"""
Applies color matching from the reference image to the source image.
Args:
source_img_np (numpy.ndarray): Source image in NumPy array format.
ref_img_np (numpy.ndarray): Reference image in NumPy array format.
Returns:
numpy.ndarray: Color-matched image.
"""
# Initialize ColorMatcher
cm = ColorMatcher()
# Apply color matching
img_res = cm.transfer(src=source_img_np, ref=ref_img_np, method='mkl')
# Normalize the result
img_res = Normalizer(img_res).uint8_norm()
return img_res
def process_image(current_image_pil, selected_prompt, masks_dict, replacement_image_pil, color_ref_image_pil, apply_replacement, apply_color_grading, apply_color_to_full_image, blending_amount, image_history):
"""
Processes the image by applying replacement and/or color grading based on user input.
Args:
current_image_pil (PIL.Image): The current image to be edited.
selected_prompt (str): The selected segment prompt.
masks_dict (dict): Dictionary of masks for each prompt.
replacement_image_pil (PIL.Image): Replacement image (optional).
color_ref_image_pil (PIL.Image): Color reference image (optional).
apply_replacement (bool): Flag to apply replacement.
apply_color_grading (bool): Flag to apply color grading.
apply_color_to_full_image (bool): Flag to apply color grading to the full image.
blending_amount (int): Amount for blending the mask.
image_history (list): History of images for undo functionality.
Returns:
tuple: Updated image, status message, updated history, and image display.
"""
# Check if current_image_pil is None
if current_image_pil is None:
return None, "No current image to edit.", image_history, None
if not apply_replacement and not apply_color_grading:
return current_image_pil, "No changes applied. Please select at least one operation.", image_history, current_image_pil
if apply_replacement and replacement_image_pil is None:
return current_image_pil, "Replacement image not provided.", image_history, current_image_pil
if apply_color_grading and color_ref_image_pil is None:
return current_image_pil, "Color reference image not provided.", image_history, current_image_pil
# Get the mask from masks_dict
if selected_prompt not in masks_dict:
return current_image_pil, f"No mask available for selected segment: {selected_prompt}", image_history, current_image_pil
mask = masks_dict[selected_prompt]
# Save current image to history for undo
if image_history is None:
image_history = []
image_history.append(current_image_pil.copy())
# Proceed with replacement or color matching
current_image_np = np.array(current_image_pil)
result_image_np = current_image_np.copy()
# Create mask with blending
# First, normalize mask to range [0,1]
mask_normalized = mask.astype(np.float32) / 255.0
# Apply blending by blurring the mask
if blending_amount > 0:
# The kernel size for blurring; larger blending_amount means more blur
kernel_size = int(blending_amount)
if kernel_size % 2 == 0:
kernel_size += 1 # Kernel size must be odd
mask_blurred = cv2.GaussianBlur(mask_normalized, (kernel_size, kernel_size), 0)
else:
mask_blurred = mask_normalized
# Convert mask to 3 channels
mask_blurred_3ch = cv2.merge([mask_blurred, mask_blurred, mask_blurred])
# If apply replacement
if apply_replacement:
# Resize replacement image to match current image
replacement_image_resized = replacement_image_pil.resize(current_image_pil.size)
replacement_image_np = np.array(replacement_image_resized)
# Blend the replacement image with the current image using the mask
result_image_np = (replacement_image_np.astype(np.float32) * mask_blurred_3ch + result_image_np.astype(np.float32) * (1 - mask_blurred_3ch)).astype(np.uint8)
# If apply color grading
if apply_color_grading:
# Convert color reference image to numpy
color_ref_image_np = np.array(color_ref_image_pil)
if apply_color_to_full_image:
# Apply color matching to the full image
color_matched_image = apply_color_matching(result_image_np, color_ref_image_np)
result_image_np = color_matched_image
else:
# Apply color matching only to the masked area
# Extract the masked area
masked_region = (result_image_np.astype(np.float32) * mask_blurred_3ch).astype(np.uint8)
# Apply color matching
color_matched_region = apply_color_matching(masked_region, color_ref_image_np)
# Blend the color matched region back into the result image
result_image_np = (color_matched_region.astype(np.float32) * mask_blurred_3ch + result_image_np.astype(np.float32) * (1 - mask_blurred_3ch)).astype(np.uint8)
# Convert result back to PIL Image
result_image_pil = Image.fromarray(result_image_np)
# Update current_image_pil
current_image_pil = result_image_pil
return current_image_pil, f"Applied changes to '{selected_prompt}'", image_history, current_image_pil
def undo(image_history):
"""
Undoes the last image edit by reverting to the previous image in the history.
Args:
image_history (list): History of images.
Returns:
tuple: Reverted image, updated history, and image display.
"""
if image_history and len(image_history) > 1:
# Pop the last image
image_history.pop()
# Return the previous image
current_image_pil = image_history[-1]
return current_image_pil, image_history, current_image_pil
elif image_history and len(image_history) == 1:
current_image_pil = image_history[0]
return current_image_pil, image_history, current_image_pil
else:
# Cannot undo
return None, [], None
def gradio_interface():
"""
Defines and launches the Gradio interface for continuous image editing.
"""
with gr.Blocks() as demo:
# Define the state variables
image_history = gr.State([])
current_image_pil = gr.State(None)
masks_dict = gr.State({}) # Store masks for each prompt
gr.Markdown("## Continuous Image Editing with LangSAM")
with gr.Row():
with gr.Column():
initial_image = gr.Image(type="pil", label="Upload Image")
prompts = gr.Textbox(lines=1, placeholder="Enter prompts separated by commas (e.g., sky, grass)", label="Prompts")
segment_button = gr.Button("Segment Image")
segment_dropdown = gr.Dropdown(label="Select Segment", choices=[], allow_custom_value=True)
replacement_image = gr.Image(type="pil", label="Replacement Image (optional)")
color_ref_image = gr.Image(type="pil", label="Color Reference Image (optional)")
apply_replacement = gr.Checkbox(label="Apply Replacement", value=False)
apply_color_grading = gr.Checkbox(label="Apply Color Grading", value=False)
apply_color_to_full_image = gr.Checkbox(label="Apply Color Correction to Full Image", value=False)
blending_amount = gr.Slider(minimum=0, maximum=500, step=1, label="Blending Amount", value=150)
apply_button = gr.Button("Apply Changes")
undo_button = gr.Button("Undo")
with gr.Column():
current_image_display = gr.Image(type="pil", label="Edited Image", interactive=False)
status = gr.Textbox(lines=2, interactive=False, label="Status")
def initialize_image(initial_image_pil):
"""
Initializes the image history and sets up the initial image.
Args:
initial_image_pil (PIL.Image): The uploaded initial image.
Returns:
tuple: Updated states and status message.
"""
if initial_image_pil is not None:
image_history = [initial_image_pil]
current_image_pil = initial_image_pil
return current_image_pil, image_history, initial_image_pil, {}, gr.update(choices=[], value=None), "Image loaded."
else:
return None, [], None, {}, gr.update(choices=[], value=None), "No image loaded."
# When the initial image is uploaded, initialize the image history
initial_image.upload(
fn=initialize_image,
inputs=initial_image,
outputs=[current_image_pil, image_history, current_image_display, masks_dict, segment_dropdown, status]
)
# Segment button click
def segment_image_wrapper(current_image_pil, prompts):
"""
Handles the segmentation of the image based on user prompts.
Args:
current_image_pil (PIL.Image): The current image.
prompts (str): Comma-separated prompts.
Returns:
tuple: Status message, updated masks, and dropdown updates.
"""
if current_image_pil is None:
return "No image uploaded.", {}, gr.update(choices=[], value=None)
masks = extract_masks(current_image_pil, prompts)
if not masks:
return "No masks detected for the given prompts.", {}, gr.update(choices=[], value=None)
dropdown_choices = list(masks.keys())
return "Segmentation completed.", masks, gr.update(choices=dropdown_choices, value=dropdown_choices[0])
segment_button.click(
fn=segment_image_wrapper,
inputs=[current_image_pil, prompts],
outputs=[status, masks_dict, segment_dropdown]
)
# Apply button click
apply_button.click(
fn=process_image,
inputs=[
current_image_pil,
segment_dropdown,
masks_dict,
replacement_image,
color_ref_image,
apply_replacement,
apply_color_grading,
apply_color_to_full_image,
blending_amount,
image_history
],
outputs=[current_image_pil, status, image_history, current_image_display]
)
# Undo button click
undo_button.click(
fn=undo,
inputs=image_history,
outputs=[current_image_pil, image_history, current_image_display]
)
demo.launch(share=True)
# Run the Gradio Interface
if __name__ == "__main__":
gradio_interface()
|