Update app.py
Browse files
app.py
CHANGED
@@ -15,10 +15,9 @@ warnings.filterwarnings("ignore", category=UserWarning)
|
|
15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
print(f"Using device: {device}")
|
17 |
|
18 |
-
# Load the LangSAM model
|
19 |
-
model = LangSAM()
|
20 |
-
model.to(device)
|
21 |
-
model.eval() # Set model to evaluation mode
|
22 |
|
23 |
def extract_masks(image_pil, prompts):
|
24 |
"""
|
@@ -35,7 +34,7 @@ def extract_masks(image_pil, prompts):
|
|
35 |
masks_dict = {}
|
36 |
with torch.no_grad(): # Disable gradient computation for inference
|
37 |
for prompt in prompts_list:
|
38 |
-
# Ensure the model uses the correct device
|
39 |
masks, boxes, phrases, logits = model.predict(image_pil, prompt)
|
40 |
if masks is not None and len(masks) > 0:
|
41 |
# Move masks to CPU and convert to numpy
|
|
|
15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
print(f"Using device: {device}")
|
17 |
|
18 |
+
# Load the LangSAM model
|
19 |
+
model = LangSAM() # Use the default model or specify custom checkpoint if necessary
|
20 |
+
# Note: Removed model.to(device) since LangSAM does not support it
|
|
|
21 |
|
22 |
def extract_masks(image_pil, prompts):
|
23 |
"""
|
|
|
34 |
masks_dict = {}
|
35 |
with torch.no_grad(): # Disable gradient computation for inference
|
36 |
for prompt in prompts_list:
|
37 |
+
# Ensure the model uses the correct device internally
|
38 |
masks, boxes, phrases, logits = model.predict(image_pil, prompt)
|
39 |
if masks is not None and len(masks) > 0:
|
40 |
# Move masks to CPU and convert to numpy
|