Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,21 +11,50 @@ import warnings
|
|
| 11 |
# Suppress specific warnings if desired
|
| 12 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
def extract_masks(image_pil, prompts):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
prompts_list = [p.strip() for p in prompts.split(',') if p.strip()]
|
| 19 |
masks_dict = {}
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
| 26 |
return masks_dict
|
| 27 |
|
| 28 |
def apply_color_matching(source_img_np, ref_img_np):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
# Initialize ColorMatcher
|
| 30 |
cm = ColorMatcher()
|
| 31 |
|
|
@@ -38,6 +67,24 @@ def apply_color_matching(source_img_np, ref_img_np):
|
|
| 38 |
return img_res
|
| 39 |
|
| 40 |
def process_image(current_image_pil, selected_prompt, masks_dict, replacement_image_pil, color_ref_image_pil, apply_replacement, apply_color_grading, apply_color_to_full_image, blending_amount, image_history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
# Check if current_image_pil is None
|
| 42 |
if current_image_pil is None:
|
| 43 |
return None, "No current image to edit.", image_history, None
|
|
@@ -119,6 +166,15 @@ def process_image(current_image_pil, selected_prompt, masks_dict, replacement_im
|
|
| 119 |
return current_image_pil, f"Applied changes to '{selected_prompt}'", image_history, current_image_pil
|
| 120 |
|
| 121 |
def undo(image_history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
if image_history and len(image_history) > 1:
|
| 123 |
# Pop the last image
|
| 124 |
image_history.pop()
|
|
@@ -133,6 +189,9 @@ def undo(image_history):
|
|
| 133 |
return None, [], None
|
| 134 |
|
| 135 |
def gradio_interface():
|
|
|
|
|
|
|
|
|
|
| 136 |
with gr.Blocks() as demo:
|
| 137 |
# Define the state variables
|
| 138 |
image_history = gr.State([])
|
|
@@ -160,7 +219,15 @@ def gradio_interface():
|
|
| 160 |
status = gr.Textbox(lines=2, interactive=False, label="Status")
|
| 161 |
|
| 162 |
def initialize_image(initial_image_pil):
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
if initial_image_pil is not None:
|
| 165 |
image_history = [initial_image_pil]
|
| 166 |
current_image_pil = initial_image_pil
|
|
@@ -177,6 +244,16 @@ def gradio_interface():
|
|
| 177 |
|
| 178 |
# Segment button click
|
| 179 |
def segment_image_wrapper(current_image_pil, prompts):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
if current_image_pil is None:
|
| 181 |
return "No image uploaded.", {}, gr.update(choices=[], value=None)
|
| 182 |
masks = extract_masks(current_image_pil, prompts)
|
|
|
|
| 11 |
# Suppress specific warnings if desired
|
| 12 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 13 |
|
| 14 |
+
# Device configuration: Use CUDA if available, else CPU
|
| 15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
print(f"Using device: {device}")
|
| 17 |
+
|
| 18 |
+
# Load the LangSAM model and move it to the selected device
|
| 19 |
+
model = LangSAM()
|
| 20 |
+
model.to(device)
|
| 21 |
+
model.eval() # Set model to evaluation mode
|
| 22 |
|
| 23 |
def extract_masks(image_pil, prompts):
|
| 24 |
+
"""
|
| 25 |
+
Extracts masks for each prompt using the LangSAM model.
|
| 26 |
+
|
| 27 |
+
Args:
|
| 28 |
+
image_pil (PIL.Image): The input image.
|
| 29 |
+
prompts (str): Comma-separated prompts for segmentation.
|
| 30 |
+
|
| 31 |
+
Returns:
|
| 32 |
+
dict: A dictionary mapping each prompt to its corresponding binary mask.
|
| 33 |
+
"""
|
| 34 |
prompts_list = [p.strip() for p in prompts.split(',') if p.strip()]
|
| 35 |
masks_dict = {}
|
| 36 |
+
with torch.no_grad(): # Disable gradient computation for inference
|
| 37 |
+
for prompt in prompts_list:
|
| 38 |
+
# Ensure the model uses the correct device
|
| 39 |
+
masks, boxes, phrases, logits = model.predict(image_pil, prompt)
|
| 40 |
+
if masks is not None and len(masks) > 0:
|
| 41 |
+
# Move masks to CPU and convert to numpy
|
| 42 |
+
masks_np = masks[0].cpu().numpy()
|
| 43 |
+
mask = (masks_np > 0).astype(np.uint8) * 255 # Binary mask
|
| 44 |
+
masks_dict[prompt] = mask
|
| 45 |
return masks_dict
|
| 46 |
|
| 47 |
def apply_color_matching(source_img_np, ref_img_np):
|
| 48 |
+
"""
|
| 49 |
+
Applies color matching from the reference image to the source image.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
source_img_np (numpy.ndarray): Source image in NumPy array format.
|
| 53 |
+
ref_img_np (numpy.ndarray): Reference image in NumPy array format.
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
numpy.ndarray: Color-matched image.
|
| 57 |
+
"""
|
| 58 |
# Initialize ColorMatcher
|
| 59 |
cm = ColorMatcher()
|
| 60 |
|
|
|
|
| 67 |
return img_res
|
| 68 |
|
| 69 |
def process_image(current_image_pil, selected_prompt, masks_dict, replacement_image_pil, color_ref_image_pil, apply_replacement, apply_color_grading, apply_color_to_full_image, blending_amount, image_history):
|
| 70 |
+
"""
|
| 71 |
+
Processes the image by applying replacement and/or color grading based on user input.
|
| 72 |
+
|
| 73 |
+
Args:
|
| 74 |
+
current_image_pil (PIL.Image): The current image to be edited.
|
| 75 |
+
selected_prompt (str): The selected segment prompt.
|
| 76 |
+
masks_dict (dict): Dictionary of masks for each prompt.
|
| 77 |
+
replacement_image_pil (PIL.Image): Replacement image (optional).
|
| 78 |
+
color_ref_image_pil (PIL.Image): Color reference image (optional).
|
| 79 |
+
apply_replacement (bool): Flag to apply replacement.
|
| 80 |
+
apply_color_grading (bool): Flag to apply color grading.
|
| 81 |
+
apply_color_to_full_image (bool): Flag to apply color grading to the full image.
|
| 82 |
+
blending_amount (int): Amount for blending the mask.
|
| 83 |
+
image_history (list): History of images for undo functionality.
|
| 84 |
+
|
| 85 |
+
Returns:
|
| 86 |
+
tuple: Updated image, status message, updated history, and image display.
|
| 87 |
+
"""
|
| 88 |
# Check if current_image_pil is None
|
| 89 |
if current_image_pil is None:
|
| 90 |
return None, "No current image to edit.", image_history, None
|
|
|
|
| 166 |
return current_image_pil, f"Applied changes to '{selected_prompt}'", image_history, current_image_pil
|
| 167 |
|
| 168 |
def undo(image_history):
|
| 169 |
+
"""
|
| 170 |
+
Undoes the last image edit by reverting to the previous image in the history.
|
| 171 |
+
|
| 172 |
+
Args:
|
| 173 |
+
image_history (list): History of images.
|
| 174 |
+
|
| 175 |
+
Returns:
|
| 176 |
+
tuple: Reverted image, updated history, and image display.
|
| 177 |
+
"""
|
| 178 |
if image_history and len(image_history) > 1:
|
| 179 |
# Pop the last image
|
| 180 |
image_history.pop()
|
|
|
|
| 189 |
return None, [], None
|
| 190 |
|
| 191 |
def gradio_interface():
|
| 192 |
+
"""
|
| 193 |
+
Defines and launches the Gradio interface for continuous image editing.
|
| 194 |
+
"""
|
| 195 |
with gr.Blocks() as demo:
|
| 196 |
# Define the state variables
|
| 197 |
image_history = gr.State([])
|
|
|
|
| 219 |
status = gr.Textbox(lines=2, interactive=False, label="Status")
|
| 220 |
|
| 221 |
def initialize_image(initial_image_pil):
|
| 222 |
+
"""
|
| 223 |
+
Initializes the image history and sets up the initial image.
|
| 224 |
+
|
| 225 |
+
Args:
|
| 226 |
+
initial_image_pil (PIL.Image): The uploaded initial image.
|
| 227 |
+
|
| 228 |
+
Returns:
|
| 229 |
+
tuple: Updated states and status message.
|
| 230 |
+
"""
|
| 231 |
if initial_image_pil is not None:
|
| 232 |
image_history = [initial_image_pil]
|
| 233 |
current_image_pil = initial_image_pil
|
|
|
|
| 244 |
|
| 245 |
# Segment button click
|
| 246 |
def segment_image_wrapper(current_image_pil, prompts):
|
| 247 |
+
"""
|
| 248 |
+
Handles the segmentation of the image based on user prompts.
|
| 249 |
+
|
| 250 |
+
Args:
|
| 251 |
+
current_image_pil (PIL.Image): The current image.
|
| 252 |
+
prompts (str): Comma-separated prompts.
|
| 253 |
+
|
| 254 |
+
Returns:
|
| 255 |
+
tuple: Status message, updated masks, and dropdown updates.
|
| 256 |
+
"""
|
| 257 |
if current_image_pil is None:
|
| 258 |
return "No image uploaded.", {}, gr.update(choices=[], value=None)
|
| 259 |
masks = extract_masks(current_image_pil, prompts)
|