Update app.py
Browse files
app.py
CHANGED
@@ -11,21 +11,50 @@ import warnings
|
|
11 |
# Suppress specific warnings if desired
|
12 |
warnings.filterwarnings("ignore", category=UserWarning)
|
13 |
|
14 |
-
#
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def extract_masks(image_pil, prompts):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
prompts_list = [p.strip() for p in prompts.split(',') if p.strip()]
|
19 |
masks_dict = {}
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
26 |
return masks_dict
|
27 |
|
28 |
def apply_color_matching(source_img_np, ref_img_np):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
# Initialize ColorMatcher
|
30 |
cm = ColorMatcher()
|
31 |
|
@@ -38,6 +67,24 @@ def apply_color_matching(source_img_np, ref_img_np):
|
|
38 |
return img_res
|
39 |
|
40 |
def process_image(current_image_pil, selected_prompt, masks_dict, replacement_image_pil, color_ref_image_pil, apply_replacement, apply_color_grading, apply_color_to_full_image, blending_amount, image_history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# Check if current_image_pil is None
|
42 |
if current_image_pil is None:
|
43 |
return None, "No current image to edit.", image_history, None
|
@@ -119,6 +166,15 @@ def process_image(current_image_pil, selected_prompt, masks_dict, replacement_im
|
|
119 |
return current_image_pil, f"Applied changes to '{selected_prompt}'", image_history, current_image_pil
|
120 |
|
121 |
def undo(image_history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
if image_history and len(image_history) > 1:
|
123 |
# Pop the last image
|
124 |
image_history.pop()
|
@@ -133,6 +189,9 @@ def undo(image_history):
|
|
133 |
return None, [], None
|
134 |
|
135 |
def gradio_interface():
|
|
|
|
|
|
|
136 |
with gr.Blocks() as demo:
|
137 |
# Define the state variables
|
138 |
image_history = gr.State([])
|
@@ -160,7 +219,15 @@ def gradio_interface():
|
|
160 |
status = gr.Textbox(lines=2, interactive=False, label="Status")
|
161 |
|
162 |
def initialize_image(initial_image_pil):
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
if initial_image_pil is not None:
|
165 |
image_history = [initial_image_pil]
|
166 |
current_image_pil = initial_image_pil
|
@@ -177,6 +244,16 @@ def gradio_interface():
|
|
177 |
|
178 |
# Segment button click
|
179 |
def segment_image_wrapper(current_image_pil, prompts):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
if current_image_pil is None:
|
181 |
return "No image uploaded.", {}, gr.update(choices=[], value=None)
|
182 |
masks = extract_masks(current_image_pil, prompts)
|
|
|
11 |
# Suppress specific warnings if desired
|
12 |
warnings.filterwarnings("ignore", category=UserWarning)
|
13 |
|
14 |
+
# Device configuration: Use CUDA if available, else CPU
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
print(f"Using device: {device}")
|
17 |
+
|
18 |
+
# Load the LangSAM model and move it to the selected device
|
19 |
+
model = LangSAM()
|
20 |
+
model.to(device)
|
21 |
+
model.eval() # Set model to evaluation mode
|
22 |
|
23 |
def extract_masks(image_pil, prompts):
|
24 |
+
"""
|
25 |
+
Extracts masks for each prompt using the LangSAM model.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
image_pil (PIL.Image): The input image.
|
29 |
+
prompts (str): Comma-separated prompts for segmentation.
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
dict: A dictionary mapping each prompt to its corresponding binary mask.
|
33 |
+
"""
|
34 |
prompts_list = [p.strip() for p in prompts.split(',') if p.strip()]
|
35 |
masks_dict = {}
|
36 |
+
with torch.no_grad(): # Disable gradient computation for inference
|
37 |
+
for prompt in prompts_list:
|
38 |
+
# Ensure the model uses the correct device
|
39 |
+
masks, boxes, phrases, logits = model.predict(image_pil, prompt)
|
40 |
+
if masks is not None and len(masks) > 0:
|
41 |
+
# Move masks to CPU and convert to numpy
|
42 |
+
masks_np = masks[0].cpu().numpy()
|
43 |
+
mask = (masks_np > 0).astype(np.uint8) * 255 # Binary mask
|
44 |
+
masks_dict[prompt] = mask
|
45 |
return masks_dict
|
46 |
|
47 |
def apply_color_matching(source_img_np, ref_img_np):
|
48 |
+
"""
|
49 |
+
Applies color matching from the reference image to the source image.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
source_img_np (numpy.ndarray): Source image in NumPy array format.
|
53 |
+
ref_img_np (numpy.ndarray): Reference image in NumPy array format.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
numpy.ndarray: Color-matched image.
|
57 |
+
"""
|
58 |
# Initialize ColorMatcher
|
59 |
cm = ColorMatcher()
|
60 |
|
|
|
67 |
return img_res
|
68 |
|
69 |
def process_image(current_image_pil, selected_prompt, masks_dict, replacement_image_pil, color_ref_image_pil, apply_replacement, apply_color_grading, apply_color_to_full_image, blending_amount, image_history):
|
70 |
+
"""
|
71 |
+
Processes the image by applying replacement and/or color grading based on user input.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
current_image_pil (PIL.Image): The current image to be edited.
|
75 |
+
selected_prompt (str): The selected segment prompt.
|
76 |
+
masks_dict (dict): Dictionary of masks for each prompt.
|
77 |
+
replacement_image_pil (PIL.Image): Replacement image (optional).
|
78 |
+
color_ref_image_pil (PIL.Image): Color reference image (optional).
|
79 |
+
apply_replacement (bool): Flag to apply replacement.
|
80 |
+
apply_color_grading (bool): Flag to apply color grading.
|
81 |
+
apply_color_to_full_image (bool): Flag to apply color grading to the full image.
|
82 |
+
blending_amount (int): Amount for blending the mask.
|
83 |
+
image_history (list): History of images for undo functionality.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
tuple: Updated image, status message, updated history, and image display.
|
87 |
+
"""
|
88 |
# Check if current_image_pil is None
|
89 |
if current_image_pil is None:
|
90 |
return None, "No current image to edit.", image_history, None
|
|
|
166 |
return current_image_pil, f"Applied changes to '{selected_prompt}'", image_history, current_image_pil
|
167 |
|
168 |
def undo(image_history):
|
169 |
+
"""
|
170 |
+
Undoes the last image edit by reverting to the previous image in the history.
|
171 |
+
|
172 |
+
Args:
|
173 |
+
image_history (list): History of images.
|
174 |
+
|
175 |
+
Returns:
|
176 |
+
tuple: Reverted image, updated history, and image display.
|
177 |
+
"""
|
178 |
if image_history and len(image_history) > 1:
|
179 |
# Pop the last image
|
180 |
image_history.pop()
|
|
|
189 |
return None, [], None
|
190 |
|
191 |
def gradio_interface():
|
192 |
+
"""
|
193 |
+
Defines and launches the Gradio interface for continuous image editing.
|
194 |
+
"""
|
195 |
with gr.Blocks() as demo:
|
196 |
# Define the state variables
|
197 |
image_history = gr.State([])
|
|
|
219 |
status = gr.Textbox(lines=2, interactive=False, label="Status")
|
220 |
|
221 |
def initialize_image(initial_image_pil):
|
222 |
+
"""
|
223 |
+
Initializes the image history and sets up the initial image.
|
224 |
+
|
225 |
+
Args:
|
226 |
+
initial_image_pil (PIL.Image): The uploaded initial image.
|
227 |
+
|
228 |
+
Returns:
|
229 |
+
tuple: Updated states and status message.
|
230 |
+
"""
|
231 |
if initial_image_pil is not None:
|
232 |
image_history = [initial_image_pil]
|
233 |
current_image_pil = initial_image_pil
|
|
|
244 |
|
245 |
# Segment button click
|
246 |
def segment_image_wrapper(current_image_pil, prompts):
|
247 |
+
"""
|
248 |
+
Handles the segmentation of the image based on user prompts.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
current_image_pil (PIL.Image): The current image.
|
252 |
+
prompts (str): Comma-separated prompts.
|
253 |
+
|
254 |
+
Returns:
|
255 |
+
tuple: Status message, updated masks, and dropdown updates.
|
256 |
+
"""
|
257 |
if current_image_pil is None:
|
258 |
return "No image uploaded.", {}, gr.update(choices=[], value=None)
|
259 |
masks = extract_masks(current_image_pil, prompts)
|