Update app.py
Browse files
app.py
CHANGED
@@ -10,58 +10,62 @@ import torch
|
|
10 |
# Load the LangSAM model
|
11 |
model = LangSAM() # Use the default model or specify custom checkpoint if necessary
|
12 |
|
13 |
-
def
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def apply_color_matching(source_img_np, ref_img_np):
|
20 |
# Initialize ColorMatcher
|
21 |
cm = ColorMatcher()
|
22 |
-
|
23 |
# Apply color matching
|
24 |
img_res = cm.transfer(src=source_img_np, ref=ref_img_np, method='mkl')
|
25 |
-
|
26 |
# Normalize the result
|
27 |
img_res = Normalizer(img_res).uint8_norm()
|
28 |
-
|
29 |
return img_res
|
30 |
|
31 |
-
def process_image(current_image_pil,
|
32 |
# Check if current_image_pil is None
|
33 |
if current_image_pil is None:
|
34 |
return None, "No current image to edit.", image_history, None
|
35 |
-
|
36 |
if not apply_replacement and not apply_color_grading:
|
37 |
return current_image_pil, "No changes applied. Please select at least one operation.", image_history, current_image_pil
|
38 |
-
|
39 |
if apply_replacement and replacement_image_pil is None:
|
40 |
return current_image_pil, "Replacement image not provided.", image_history, current_image_pil
|
41 |
|
42 |
if apply_color_grading and color_ref_image_pil is None:
|
43 |
return current_image_pil, "Color reference image not provided.", image_history, current_image_pil
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
# Save current image to history for undo
|
46 |
if image_history is None:
|
47 |
image_history = []
|
48 |
image_history.append(current_image_pil.copy())
|
49 |
-
|
50 |
-
# Extract mask
|
51 |
-
mask = extract_mask(current_image_pil, prompt)
|
52 |
-
|
53 |
-
# Check if mask is valid
|
54 |
-
if mask.sum() == 0:
|
55 |
-
return current_image_pil, f"No mask detected for prompt: {prompt}", image_history, current_image_pil
|
56 |
-
|
57 |
# Proceed with replacement or color matching
|
58 |
current_image_np = np.array(current_image_pil)
|
59 |
result_image_np = current_image_np.copy()
|
60 |
-
|
61 |
# Create mask with blending
|
62 |
# First, normalize mask to range [0,1]
|
63 |
mask_normalized = mask.astype(np.float32) / 255.0
|
64 |
-
|
65 |
# Apply blending by blurring the mask
|
66 |
if blending_amount > 0:
|
67 |
# The kernel size for blurring; larger blending_amount means more blur
|
@@ -71,56 +75,44 @@ def process_image(current_image_pil, prompt, replacement_image_pil, color_ref_im
|
|
71 |
mask_blurred = cv2.GaussianBlur(mask_normalized, (kernel_size, kernel_size), 0)
|
72 |
else:
|
73 |
mask_blurred = mask_normalized
|
74 |
-
|
75 |
# Convert mask to 3 channels
|
76 |
mask_blurred_3ch = cv2.merge([mask_blurred, mask_blurred, mask_blurred])
|
77 |
-
|
78 |
# If apply replacement
|
79 |
if apply_replacement:
|
80 |
-
# Resize replacement image to
|
81 |
-
|
82 |
-
y_indices, x_indices = np.where(mask > 0)
|
83 |
-
if y_indices.size == 0 or x_indices.size == 0:
|
84 |
-
# No mask detected
|
85 |
-
return current_image_pil, f"No mask detected for prompt: {prompt}", image_history, current_image_pil
|
86 |
-
y_min, y_max = y_indices.min(), y_indices.max()
|
87 |
-
x_min, x_max = x_indices.min(), x_indices.max()
|
88 |
-
|
89 |
-
# Extract the region of interest
|
90 |
-
mask_height = y_max - y_min + 1
|
91 |
-
mask_width = x_max - x_min + 1
|
92 |
-
|
93 |
-
# Resize replacement image to fit mask area
|
94 |
-
replacement_image_resized = replacement_image_pil.resize((mask_width, mask_height))
|
95 |
replacement_image_np = np.array(replacement_image_resized)
|
96 |
-
|
97 |
-
#
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
# Replace the masked area with the replacement image using blending
|
102 |
-
region_to_replace = result_image_np[y_min:y_max+1, x_min:x_max+1]
|
103 |
-
blended_region = (replacement_image_np.astype(np.float32) * mask_roi_3ch + region_to_replace.astype(np.float32) * (1 - mask_roi_3ch)).astype(np.uint8)
|
104 |
-
result_image_np[y_min:y_max+1, x_min:x_max+1] = blended_region
|
105 |
-
|
106 |
# If apply color grading
|
107 |
if apply_color_grading:
|
108 |
-
# Extract the masked area
|
109 |
-
masked_region = (result_image_np.astype(np.float32) * mask_blurred_3ch).astype(np.uint8)
|
110 |
# Convert color reference image to numpy
|
111 |
color_ref_image_np = np.array(color_ref_image_pil)
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
# Convert result back to PIL Image
|
118 |
result_image_pil = Image.fromarray(result_image_np)
|
119 |
-
|
120 |
# Update current_image_pil
|
121 |
current_image_pil = result_image_pil
|
122 |
-
|
123 |
-
return current_image_pil, f"Applied changes
|
124 |
|
125 |
def undo(image_history):
|
126 |
if image_history and len(image_history) > 1:
|
@@ -141,46 +133,62 @@ def gradio_interface():
|
|
141 |
# Define the state variables
|
142 |
image_history = gr.State([])
|
143 |
current_image_pil = gr.State(None)
|
144 |
-
|
|
|
145 |
gr.Markdown("## Continuous Image Editing with LangSAM")
|
146 |
-
|
147 |
with gr.Row():
|
148 |
with gr.Column():
|
149 |
initial_image = gr.Image(type="pil", label="Upload Image")
|
150 |
-
|
|
|
|
|
151 |
replacement_image = gr.Image(type="pil", label="Replacement Image (optional)")
|
152 |
color_ref_image = gr.Image(type="pil", label="Color Reference Image (optional)")
|
153 |
apply_replacement = gr.Checkbox(label="Apply Replacement", value=False)
|
154 |
apply_color_grading = gr.Checkbox(label="Apply Color Grading", value=False)
|
|
|
155 |
blending_amount = gr.Slider(minimum=0, maximum=50, step=1, label="Blending Amount", value=0)
|
156 |
apply_button = gr.Button("Apply Changes")
|
157 |
undo_button = gr.Button("Undo")
|
158 |
with gr.Column():
|
159 |
current_image_display = gr.Image(type="pil", label="Edited Image", interactive=False)
|
160 |
status = gr.Textbox(lines=2, interactive=False, label="Status")
|
161 |
-
|
162 |
def initialize_image(initial_image_pil):
|
163 |
# Initialize image history with the initial image
|
164 |
if initial_image_pil is not None:
|
165 |
image_history = [initial_image_pil]
|
166 |
current_image_pil = initial_image_pil
|
167 |
-
return current_image_pil, image_history, initial_image_pil
|
168 |
else:
|
169 |
-
return None, [], None
|
170 |
-
|
171 |
# When the initial image is uploaded, initialize the image history
|
172 |
-
initial_image.upload(fn=initialize_image, inputs=initial_image, outputs=[current_image_pil, image_history, current_image_display])
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
# Apply button click
|
175 |
-
apply_button.click(fn=process_image,
|
176 |
-
inputs=[current_image_pil,
|
177 |
outputs=[current_image_pil, status, image_history, current_image_display])
|
178 |
-
|
179 |
# Undo button click
|
180 |
undo_button.click(fn=undo, inputs=image_history, outputs=[current_image_pil, image_history, current_image_display])
|
181 |
-
|
182 |
demo.launch(share=True)
|
183 |
-
|
184 |
# Run the Gradio Interface
|
185 |
if __name__ == "__main__":
|
186 |
gradio_interface()
|
|
|
10 |
# Load the LangSAM model
|
11 |
model = LangSAM() # Use the default model or specify custom checkpoint if necessary
|
12 |
|
13 |
+
def extract_masks(image_pil, prompts):
|
14 |
+
prompts_list = [p.strip() for p in prompts.split(',') if p.strip()]
|
15 |
+
masks_dict = {}
|
16 |
+
for prompt in prompts_list:
|
17 |
+
masks, boxes, phrases, logits = model.predict(image_pil, prompt)
|
18 |
+
if masks:
|
19 |
+
masks_np = masks[0].cpu().numpy()
|
20 |
+
mask = (masks_np > 0).astype(np.uint8) * 255 # Binary mask
|
21 |
+
masks_dict[prompt] = mask
|
22 |
+
return masks_dict
|
23 |
|
24 |
def apply_color_matching(source_img_np, ref_img_np):
|
25 |
# Initialize ColorMatcher
|
26 |
cm = ColorMatcher()
|
27 |
+
|
28 |
# Apply color matching
|
29 |
img_res = cm.transfer(src=source_img_np, ref=ref_img_np, method='mkl')
|
30 |
+
|
31 |
# Normalize the result
|
32 |
img_res = Normalizer(img_res).uint8_norm()
|
33 |
+
|
34 |
return img_res
|
35 |
|
36 |
+
def process_image(current_image_pil, selected_prompt, masks_dict, replacement_image_pil, color_ref_image_pil, apply_replacement, apply_color_grading, apply_color_to_full_image, blending_amount, image_history):
|
37 |
# Check if current_image_pil is None
|
38 |
if current_image_pil is None:
|
39 |
return None, "No current image to edit.", image_history, None
|
40 |
+
|
41 |
if not apply_replacement and not apply_color_grading:
|
42 |
return current_image_pil, "No changes applied. Please select at least one operation.", image_history, current_image_pil
|
43 |
+
|
44 |
if apply_replacement and replacement_image_pil is None:
|
45 |
return current_image_pil, "Replacement image not provided.", image_history, current_image_pil
|
46 |
|
47 |
if apply_color_grading and color_ref_image_pil is None:
|
48 |
return current_image_pil, "Color reference image not provided.", image_history, current_image_pil
|
49 |
+
|
50 |
+
# Get the mask from masks_dict
|
51 |
+
if selected_prompt not in masks_dict:
|
52 |
+
return current_image_pil, f"No mask available for selected segment: {selected_prompt}", image_history, current_image_pil
|
53 |
+
|
54 |
+
mask = masks_dict[selected_prompt]
|
55 |
+
|
56 |
# Save current image to history for undo
|
57 |
if image_history is None:
|
58 |
image_history = []
|
59 |
image_history.append(current_image_pil.copy())
|
60 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
# Proceed with replacement or color matching
|
62 |
current_image_np = np.array(current_image_pil)
|
63 |
result_image_np = current_image_np.copy()
|
64 |
+
|
65 |
# Create mask with blending
|
66 |
# First, normalize mask to range [0,1]
|
67 |
mask_normalized = mask.astype(np.float32) / 255.0
|
68 |
+
|
69 |
# Apply blending by blurring the mask
|
70 |
if blending_amount > 0:
|
71 |
# The kernel size for blurring; larger blending_amount means more blur
|
|
|
75 |
mask_blurred = cv2.GaussianBlur(mask_normalized, (kernel_size, kernel_size), 0)
|
76 |
else:
|
77 |
mask_blurred = mask_normalized
|
78 |
+
|
79 |
# Convert mask to 3 channels
|
80 |
mask_blurred_3ch = cv2.merge([mask_blurred, mask_blurred, mask_blurred])
|
81 |
+
|
82 |
# If apply replacement
|
83 |
if apply_replacement:
|
84 |
+
# Resize replacement image to match current image
|
85 |
+
replacement_image_resized = replacement_image_pil.resize(current_image_pil.size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
replacement_image_np = np.array(replacement_image_resized)
|
87 |
+
|
88 |
+
# Blend the replacement image with the current image using the mask
|
89 |
+
result_image_np = (replacement_image_np.astype(np.float32) * mask_blurred_3ch + result_image_np.astype(np.float32) * (1 - mask_blurred_3ch)).astype(np.uint8)
|
90 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
# If apply color grading
|
92 |
if apply_color_grading:
|
|
|
|
|
93 |
# Convert color reference image to numpy
|
94 |
color_ref_image_np = np.array(color_ref_image_pil)
|
95 |
+
|
96 |
+
if apply_color_to_full_image:
|
97 |
+
# Apply color matching to the full image
|
98 |
+
color_matched_image = apply_color_matching(result_image_np, color_ref_image_np)
|
99 |
+
result_image_np = color_matched_image
|
100 |
+
else:
|
101 |
+
# Apply color matching only to the masked area
|
102 |
+
# Extract the masked area
|
103 |
+
masked_region = (result_image_np.astype(np.float32) * mask_blurred_3ch).astype(np.uint8)
|
104 |
+
# Apply color matching
|
105 |
+
color_matched_region = apply_color_matching(masked_region, color_ref_image_np)
|
106 |
+
# Blend the color matched region back into the result image
|
107 |
+
result_image_np = (color_matched_region.astype(np.float32) * mask_blurred_3ch + result_image_np.astype(np.float32) * (1 - mask_blurred_3ch)).astype(np.uint8)
|
108 |
+
|
109 |
# Convert result back to PIL Image
|
110 |
result_image_pil = Image.fromarray(result_image_np)
|
111 |
+
|
112 |
# Update current_image_pil
|
113 |
current_image_pil = result_image_pil
|
114 |
+
|
115 |
+
return current_image_pil, f"Applied changes to '{selected_prompt}'", image_history, current_image_pil
|
116 |
|
117 |
def undo(image_history):
|
118 |
if image_history and len(image_history) > 1:
|
|
|
133 |
# Define the state variables
|
134 |
image_history = gr.State([])
|
135 |
current_image_pil = gr.State(None)
|
136 |
+
masks_dict = gr.State({}) # Store masks for each prompt
|
137 |
+
|
138 |
gr.Markdown("## Continuous Image Editing with LangSAM")
|
139 |
+
|
140 |
with gr.Row():
|
141 |
with gr.Column():
|
142 |
initial_image = gr.Image(type="pil", label="Upload Image")
|
143 |
+
prompts = gr.Textbox(lines=1, placeholder="Enter prompts separated by commas (e.g., sky, grass)", label="Prompts")
|
144 |
+
segment_button = gr.Button("Segment Image")
|
145 |
+
segment_dropdown = gr.Dropdown(label="Select Segment", choices=[])
|
146 |
replacement_image = gr.Image(type="pil", label="Replacement Image (optional)")
|
147 |
color_ref_image = gr.Image(type="pil", label="Color Reference Image (optional)")
|
148 |
apply_replacement = gr.Checkbox(label="Apply Replacement", value=False)
|
149 |
apply_color_grading = gr.Checkbox(label="Apply Color Grading", value=False)
|
150 |
+
apply_color_to_full_image = gr.Checkbox(label="Apply Color Correction to Full Image", value=False)
|
151 |
blending_amount = gr.Slider(minimum=0, maximum=50, step=1, label="Blending Amount", value=0)
|
152 |
apply_button = gr.Button("Apply Changes")
|
153 |
undo_button = gr.Button("Undo")
|
154 |
with gr.Column():
|
155 |
current_image_display = gr.Image(type="pil", label="Edited Image", interactive=False)
|
156 |
status = gr.Textbox(lines=2, interactive=False, label="Status")
|
157 |
+
|
158 |
def initialize_image(initial_image_pil):
|
159 |
# Initialize image history with the initial image
|
160 |
if initial_image_pil is not None:
|
161 |
image_history = [initial_image_pil]
|
162 |
current_image_pil = initial_image_pil
|
163 |
+
return current_image_pil, image_history, initial_image_pil, {}, [], "Image loaded."
|
164 |
else:
|
165 |
+
return None, [], None, {}, [], "No image loaded."
|
166 |
+
|
167 |
# When the initial image is uploaded, initialize the image history
|
168 |
+
initial_image.upload(fn=initialize_image, inputs=initial_image, outputs=[current_image_pil, image_history, current_image_display, masks_dict, segment_dropdown, status])
|
169 |
+
|
170 |
+
# Segment button click
|
171 |
+
def segment_image_wrapper(current_image_pil, prompts):
|
172 |
+
if current_image_pil is None:
|
173 |
+
return "No image uploaded.", {}, []
|
174 |
+
masks = extract_masks(current_image_pil, prompts)
|
175 |
+
if not masks:
|
176 |
+
return "No masks detected for the given prompts.", {}, []
|
177 |
+
dropdown_choices = list(masks.keys())
|
178 |
+
return "Segmentation completed.", masks, gr.Dropdown.update(choices=dropdown_choices, value=dropdown_choices[0])
|
179 |
+
|
180 |
+
segment_button.click(fn=segment_image_wrapper, inputs=[current_image_pil, prompts], outputs=[status, masks_dict, segment_dropdown])
|
181 |
+
|
182 |
# Apply button click
|
183 |
+
apply_button.click(fn=process_image,
|
184 |
+
inputs=[current_image_pil, segment_dropdown, masks_dict, replacement_image, color_ref_image, apply_replacement, apply_color_grading, apply_color_to_full_image, blending_amount, image_history],
|
185 |
outputs=[current_image_pil, status, image_history, current_image_display])
|
186 |
+
|
187 |
# Undo button click
|
188 |
undo_button.click(fn=undo, inputs=image_history, outputs=[current_image_pil, image_history, current_image_display])
|
189 |
+
|
190 |
demo.launch(share=True)
|
191 |
+
|
192 |
# Run the Gradio Interface
|
193 |
if __name__ == "__main__":
|
194 |
gradio_interface()
|