Sutirtha commited on
Commit
8aedf76
·
verified ·
1 Parent(s): 5ac91f5
Files changed (1) hide show
  1. app.py +186 -0
app.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ import numpy as np
4
+ import cv2
5
+ from lang_sam import LangSAM
6
+ from color_matcher import ColorMatcher
7
+ from color_matcher.normalizer import Normalizer
8
+ import torch
9
+
10
+ # Load the LangSAM model
11
+ model = LangSAM() # Use the default model or specify custom checkpoint if necessary
12
+
13
+ def extract_mask(image_pil, text_prompt):
14
+ masks, boxes, phrases, logits = model.predict(image_pil, text_prompt)
15
+ masks_np = masks[0].cpu().numpy()
16
+ mask = (masks_np > 0).astype(np.uint8) * 255 # Binary mask
17
+ return mask
18
+
19
+ def apply_color_matching(source_img_np, ref_img_np):
20
+ # Initialize ColorMatcher
21
+ cm = ColorMatcher()
22
+
23
+ # Apply color matching
24
+ img_res = cm.transfer(src=source_img_np, ref=ref_img_np, method='mkl')
25
+
26
+ # Normalize the result
27
+ img_res = Normalizer(img_res).uint8_norm()
28
+
29
+ return img_res
30
+
31
+ def process_image(current_image_pil, prompt, replacement_image_pil, color_ref_image_pil, apply_replacement, apply_color_grading, blending_amount, image_history):
32
+ # Check if current_image_pil is None
33
+ if current_image_pil is None:
34
+ return None, "No current image to edit.", image_history, None
35
+
36
+ if not apply_replacement and not apply_color_grading:
37
+ return current_image_pil, "No changes applied. Please select at least one operation.", image_history, current_image_pil
38
+
39
+ if apply_replacement and replacement_image_pil is None:
40
+ return current_image_pil, "Replacement image not provided.", image_history, current_image_pil
41
+
42
+ if apply_color_grading and color_ref_image_pil is None:
43
+ return current_image_pil, "Color reference image not provided.", image_history, current_image_pil
44
+
45
+ # Save current image to history for undo
46
+ if image_history is None:
47
+ image_history = []
48
+ image_history.append(current_image_pil.copy())
49
+
50
+ # Extract mask
51
+ mask = extract_mask(current_image_pil, prompt)
52
+
53
+ # Check if mask is valid
54
+ if mask.sum() == 0:
55
+ return current_image_pil, f"No mask detected for prompt: {prompt}", image_history, current_image_pil
56
+
57
+ # Proceed with replacement or color matching
58
+ current_image_np = np.array(current_image_pil)
59
+ result_image_np = current_image_np.copy()
60
+
61
+ # Create mask with blending
62
+ # First, normalize mask to range [0,1]
63
+ mask_normalized = mask.astype(np.float32) / 255.0
64
+
65
+ # Apply blending by blurring the mask
66
+ if blending_amount > 0:
67
+ # The kernel size for blurring; larger blending_amount means more blur
68
+ kernel_size = int(blending_amount)
69
+ if kernel_size % 2 == 0:
70
+ kernel_size += 1 # Kernel size must be odd
71
+ mask_blurred = cv2.GaussianBlur(mask_normalized, (kernel_size, kernel_size), 0)
72
+ else:
73
+ mask_blurred = mask_normalized
74
+
75
+ # Convert mask to 3 channels
76
+ mask_blurred_3ch = cv2.merge([mask_blurred, mask_blurred, mask_blurred])
77
+
78
+ # If apply replacement
79
+ if apply_replacement:
80
+ # Resize replacement image to fit the mask area
81
+ # Get bounding box of the mask
82
+ y_indices, x_indices = np.where(mask > 0)
83
+ if y_indices.size == 0 or x_indices.size == 0:
84
+ # No mask detected
85
+ return current_image_pil, f"No mask detected for prompt: {prompt}", image_history, current_image_pil
86
+ y_min, y_max = y_indices.min(), y_indices.max()
87
+ x_min, x_max = x_indices.min(), x_indices.max()
88
+
89
+ # Extract the region of interest
90
+ mask_height = y_max - y_min + 1
91
+ mask_width = x_max - x_min + 1
92
+
93
+ # Resize replacement image to fit mask area
94
+ replacement_image_resized = replacement_image_pil.resize((mask_width, mask_height))
95
+ replacement_image_np = np.array(replacement_image_resized)
96
+
97
+ # Create a mask for the ROI
98
+ mask_roi = mask_blurred[y_min:y_max+1, x_min:x_max+1]
99
+ mask_roi_3ch = cv2.merge([mask_roi, mask_roi, mask_roi])
100
+
101
+ # Replace the masked area with the replacement image using blending
102
+ region_to_replace = result_image_np[y_min:y_max+1, x_min:x_max+1]
103
+ blended_region = (replacement_image_np.astype(np.float32) * mask_roi_3ch + region_to_replace.astype(np.float32) * (1 - mask_roi_3ch)).astype(np.uint8)
104
+ result_image_np[y_min:y_max+1, x_min:x_max+1] = blended_region
105
+
106
+ # If apply color grading
107
+ if apply_color_grading:
108
+ # Extract the masked area
109
+ masked_region = (result_image_np.astype(np.float32) * mask_blurred_3ch).astype(np.uint8)
110
+ # Convert color reference image to numpy
111
+ color_ref_image_np = np.array(color_ref_image_pil)
112
+ # Apply color matching
113
+ color_matched_region = apply_color_matching(masked_region, color_ref_image_np)
114
+ # Blend the color matched region back into the result image
115
+ result_image_np = (color_matched_region.astype(np.float32) * mask_blurred_3ch + result_image_np.astype(np.float32) * (1 - mask_blurred_3ch)).astype(np.uint8)
116
+
117
+ # Convert result back to PIL Image
118
+ result_image_pil = Image.fromarray(result_image_np)
119
+
120
+ # Update current_image_pil
121
+ current_image_pil = result_image_pil
122
+
123
+ return current_image_pil, f"Applied changes for prompt: {prompt}", image_history, current_image_pil
124
+
125
+ def undo(image_history):
126
+ if image_history and len(image_history) > 1:
127
+ # Pop the last image
128
+ image_history.pop()
129
+ # Return the previous image
130
+ current_image_pil = image_history[-1]
131
+ return current_image_pil, image_history, current_image_pil
132
+ elif image_history and len(image_history) == 1:
133
+ current_image_pil = image_history[0]
134
+ return current_image_pil, image_history, current_image_pil
135
+ else:
136
+ # Cannot undo
137
+ return None, [], None
138
+
139
+ def gradio_interface():
140
+ with gr.Blocks() as demo:
141
+ # Define the state variables
142
+ image_history = gr.State([])
143
+ current_image_pil = gr.State(None)
144
+
145
+ gr.Markdown("## Continuous Image Editing with LangSAM")
146
+
147
+ with gr.Row():
148
+ with gr.Column():
149
+ initial_image = gr.Image(type="pil", label="Upload Image")
150
+ prompt = gr.Textbox(lines=1, placeholder="Enter prompt for object detection", label="Prompt")
151
+ replacement_image = gr.Image(type="pil", label="Replacement Image (optional)")
152
+ color_ref_image = gr.Image(type="pil", label="Color Reference Image (optional)")
153
+ apply_replacement = gr.Checkbox(label="Apply Replacement", value=False)
154
+ apply_color_grading = gr.Checkbox(label="Apply Color Grading", value=False)
155
+ blending_amount = gr.Slider(minimum=0, maximum=50, step=1, label="Blending Amount", value=0)
156
+ apply_button = gr.Button("Apply Changes")
157
+ undo_button = gr.Button("Undo")
158
+ with gr.Column():
159
+ current_image_display = gr.Image(type="pil", label="Edited Image", interactive=False)
160
+ status = gr.Textbox(lines=2, interactive=False, label="Status")
161
+
162
+ def initialize_image(initial_image_pil):
163
+ # Initialize image history with the initial image
164
+ if initial_image_pil is not None:
165
+ image_history = [initial_image_pil]
166
+ current_image_pil = initial_image_pil
167
+ return current_image_pil, image_history, initial_image_pil
168
+ else:
169
+ return None, [], None
170
+
171
+ # When the initial image is uploaded, initialize the image history
172
+ initial_image.upload(fn=initialize_image, inputs=initial_image, outputs=[current_image_pil, image_history, current_image_display])
173
+
174
+ # Apply button click
175
+ apply_button.click(fn=process_image,
176
+ inputs=[current_image_pil, prompt, replacement_image, color_ref_image, apply_replacement, apply_color_grading, blending_amount, image_history],
177
+ outputs=[current_image_pil, status, image_history, current_image_display])
178
+
179
+ # Undo button click
180
+ undo_button.click(fn=undo, inputs=image_history, outputs=[current_image_pil, image_history, current_image_display])
181
+
182
+ demo.launch(share=True)
183
+
184
+ # Run the Gradio Interface
185
+ if __name__ == "__main__":
186
+ gradio_interface()