Spaces:
Running
Running
File size: 7,538 Bytes
ac55573 e93dd75 6e3fd3f ac55573 6e3fd3f e93dd75 6e3fd3f 3b03261 6e3fd3f 3b03261 6e3fd3f 3b03261 ac55573 3b03261 6e3fd3f 29901d7 3b03261 6e3fd3f ac55573 6e3fd3f ac55573 6e3fd3f ac55573 6e3fd3f 3b03261 ac55573 6e3fd3f ac55573 a8054b3 ac55573 6e3fd3f ac55573 6e3fd3f ac55573 6e3fd3f ac55573 6e3fd3f 3b03261 6e3fd3f 2b307a5 6e3fd3f a8054b3 ac55573 29901d7 6e3fd3f ac55573 6e3fd3f ac55573 6e3fd3f ac55573 3b03261 6e3fd3f 0848e32 6e3fd3f 29901d7 6e3fd3f 3b03261 6e3fd3f a8054b3 6e3fd3f ac55573 6e3fd3f a8054b3 6e3fd3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# Maximize CPU usage
import multiprocessing
import cv2
# Get the number of CPU cores
cpu_cores = multiprocessing.cpu_count()
# Set OpenCV to use all available cores
cv2.setNumThreads(cpu_cores)
# Print the number of threads being used (optional)
print(f"OpenCV using {cv2.getNumThreads()} threads out of {cpu_cores} available cores")
##############
import cv2
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors
import logging
import math
import torch
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables to store line coordinates and line equation
start_point = None
end_point = None
line_params = None # Stores (start_point, end_point)
# Load model once globally
model = YOLO("yolo11n.pt")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = model.to(device)
def liang_barsky(line, bbox):
"""Optimized line-rectangle intersection check using Liang-Barsky algorithm"""
x1, y1 = line[0]
x2, y2 = line[1]
xmin, ymin, xmax, ymax = bbox
dx = x2 - x1
dy = y2 - y1
p = [-dx, dx, -dy, dy]
q = [x1 - xmin, xmax - x1, y1 - ymin, ymax - y1]
u1 = 0.0
u2 = 1.0
for i in range(4):
if p[i] == 0:
if q[i] < 0:
return False
continue
t = q[i] / p[i]
if p[i] < 0:
if t > u1:
u1 = t
else:
if t < u2:
u2 = t
return u1 <= u2
def extract_first_frame(stream_url):
"""Extracts the first available frame from the IP camera stream"""
logger.info("Extracting first frame...")
cap = cv2.VideoCapture(stream_url)
if not cap.isOpened():
return None, "Error: Could not open stream."
ret, frame = cap.read()
cap.release()
if not ret:
return None, "Error: Could not read frame."
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return Image.fromarray(frame_rgb), "First frame extracted successfully."
def update_line(image, evt: gr.SelectData):
"""Handles line drawing interactions"""
global start_point, end_point, line_params
if start_point is None:
start_point = (evt.index[0], evt.index[1])
draw = ImageDraw.Draw(image)
draw.ellipse((start_point[0]-5, start_point[1]-5, start_point[0]+5, start_point[1]+5),
fill="blue", outline="blue")
return image, f"Line Coordinates:\nStart: {start_point}, End: None"
end_point = (evt.index[0], evt.index[1])
line_params = (start_point, end_point)
draw = ImageDraw.Draw(image)
draw.line([start_point, end_point], fill="red", width=2)
draw.ellipse((end_point[0]-5, end_point[1]-5, end_point[0]+5, end_point[1]+5),
fill="green", outline="green")
start_point = None
return image, f"Line Coordinates:\nStart: {line_params[0]}, End: {line_params[1]}"
def reset_line():
"""Resets line coordinates"""
global start_point, end_point, line_params
start_point = end_point = line_params = None
return None, "Line reset. Click to draw a new line."
def is_object_crossing_line(box, line_params):
"""Optimized line crossing check using Liang-Barsky algorithm"""
if not line_params:
return False
line_start, line_end = line_params
x1, y1, x2, y2 = box
return liang_barsky((line_start, line_end), (x1, y1, x2, y2))
def draw_angled_line(image, line_params, color=(0, 255, 0), thickness=2):
"""Draws the user-defined line on the frame"""
start, end = line_params
cv2.line(image, start, end, color, thickness)
def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=None):
"""Main video processing function with optimizations"""
global line_params
errors = []
if not line_params:
errors.append("Error: No line drawn.")
if not selected_classes:
errors.append("Error: No classes selected.")
if not stream_url:
errors.append("Error: No stream URL provided.")
if errors:
return None, "\n".join(errors)
# Convert class names to indices once
selected_class_indices = {i for i, name in model.names.items() if name in selected_classes}
cap = cv2.VideoCapture(stream_url)
cap.set(cv2.CAP_PROP_BUFFERSIZE, 1) # Reduce buffer size
if not cap.isOpened():
return None, "Error: Could not open stream."
crossed_objects = {}
max_tracked_objects = 1000
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Optimized inference
results = model.track(
frame,
persist=True,
conf=confidence_threshold,
half=True,
device=device,
verbose=False
)
if results[0].boxes.id is not None:
boxes = results[0].boxes
track_ids = boxes.id.int().cpu().tolist()
clss = boxes.cls.cpu().tolist()
for box, cls, t_id in zip(boxes.xyxy.cpu(), clss, track_ids):
if cls in selected_class_indices and t_id not in crossed_objects:
if is_object_crossing_line(box.numpy(), line_params):
crossed_objects[t_id] = True
if len(crossed_objects) > max_tracked_objects:
crossed_objects.clear()
# Visualization
annotated_frame = results[0].plot()
draw_angled_line(annotated_frame, line_params)
# Draw count
count = len(crossed_objects)
(w, h), _ = cv2.getTextSize(f"COUNT: {count}", cv2.FONT_HERSHEY_SIMPLEX, 1, 2)
cv2.rectangle(annotated_frame, (10, 10), (20 + w, 40 + h), (0, 0, 0), -1)
cv2.putText(annotated_frame, f"COUNT: {count}", (20, 40),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
yield annotated_frame, ""
cap.release()
# Gradio interface remains unchanged
with gr.Blocks() as demo:
gr.Markdown("<h1>Real-time monitoring, object tracking, and line-crossing detection for CCTV camera streams.</h1>")
gr.Markdown("## https://github.com/SanshruthR/CCTV_SENTRY_YOLO11")
stream_url = gr.Textbox(
label="IP Camera Stream URL",
value="https://s104.ipcamlive.com/streams/68idokwtondsqpmkr/stream.m3u8",
visible=False
)
# First frame extraction
first_frame, status = extract_first_frame(stream_url.value)
image = gr.Image(value=first_frame, label="First Frame", type="pil") if first_frame else gr.Markdown(f"**Error:** {status}")
line_info = gr.Textbox(label="Line Coordinates", value="Line Coordinates:\nStart: None, End: None")
image.select(update_line, inputs=image, outputs=[image, line_info])
# Class selection
class_names = list(model.names.values())
selected_classes = gr.CheckboxGroup(choices=class_names, label="Select Classes to Detect")
# Confidence threshold
confidence_threshold = gr.Slider(0.0, 1.0, value=0.2, label="Confidence Threshold")
# Process button
process_button = gr.Button("Process Stream")
output_image = gr.Image(label="Processed Frame", streaming=True)
error_box = gr.Textbox(label="Errors/Warnings", interactive=False)
process_button.click(
process_video,
inputs=[confidence_threshold, selected_classes, stream_url],
outputs=[output_image, error_box]
)
demo.launch(debug=True) |