Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
#Maximize CPU usage
|
4 |
import multiprocessing
|
5 |
import cv2
|
6 |
|
@@ -14,7 +12,7 @@ cv2.setNumThreads(cpu_cores)
|
|
14 |
print(f"OpenCV using {cv2.getNumThreads()} threads out of {cpu_cores} available cores")
|
15 |
|
16 |
##############
|
17 |
-
import
|
18 |
import gradio as gr
|
19 |
import numpy as np
|
20 |
from PIL import Image, ImageDraw
|
@@ -32,284 +30,158 @@ start_point = None
|
|
32 |
end_point = None
|
33 |
line_params = None # Stores (slope, intercept) of the line
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def extract_first_frame(stream_url):
|
36 |
-
"""
|
37 |
-
|
38 |
-
"""
|
39 |
-
logger.info("Attempting to extract the first frame from the stream...")
|
40 |
cap = cv2.VideoCapture(stream_url)
|
41 |
if not cap.isOpened():
|
42 |
-
logger.error("
|
43 |
return None, "Error: Could not open stream."
|
44 |
|
45 |
ret, frame = cap.read()
|
46 |
cap.release()
|
47 |
|
48 |
if not ret:
|
49 |
-
logger.error("
|
50 |
-
return None, "Error: Could not read
|
51 |
|
52 |
-
# Convert the frame to a PIL image
|
53 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
54 |
-
|
55 |
-
|
56 |
-
logger.info("First frame extracted successfully.")
|
57 |
-
return pil_image, "First frame extracted successfully."
|
58 |
|
59 |
def update_line(image, evt: gr.SelectData):
|
60 |
-
"""
|
61 |
-
Updates the line based on user interaction (click and drag).
|
62 |
-
"""
|
63 |
global start_point, end_point, line_params
|
64 |
|
65 |
-
# If it's the first click, set the start point and show it on the image
|
66 |
if start_point is None:
|
67 |
start_point = (evt.index[0], evt.index[1])
|
68 |
-
|
69 |
-
# Draw the start point on the image
|
70 |
draw = ImageDraw.Draw(image)
|
71 |
-
draw.ellipse(
|
72 |
-
|
73 |
-
|
74 |
-
)
|
75 |
|
76 |
-
return image, f"Line Coordinates:\nStart: {start_point}, End: None"
|
77 |
-
|
78 |
-
# If it's the second click, set the end point and draw the line
|
79 |
end_point = (evt.index[0], evt.index[1])
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
# Calculate
|
82 |
-
if start_point[0] != end_point[0]:
|
83 |
slope = (end_point[1] - start_point[1]) / (end_point[0] - start_point[0])
|
84 |
intercept = start_point[1] - slope * start_point[0]
|
85 |
-
line_params = (slope, intercept, start_point, end_point)
|
86 |
else:
|
87 |
-
# Vertical line (special case)
|
88 |
line_params = (float('inf'), start_point[0], start_point, end_point)
|
89 |
|
90 |
-
# Draw the line and end point on the image
|
91 |
-
draw = ImageDraw.Draw(image)
|
92 |
-
draw.line([start_point, end_point], fill="red", width=2)
|
93 |
-
draw.ellipse(
|
94 |
-
(end_point[0] - 5, end_point[1] - 5, end_point[0] + 5, end_point[1] + 5),
|
95 |
-
fill="green", outline="green"
|
96 |
-
)
|
97 |
-
|
98 |
-
# Return the updated image and line info
|
99 |
-
line_info = f"Line Coordinates:\nStart: {start_point}, End: {end_point}\nLine Equation: y = {line_params[0]:.2f}x + {line_params[1]:.2f}"
|
100 |
-
|
101 |
-
# Reset the points for the next interaction
|
102 |
start_point = None
|
103 |
-
|
104 |
-
|
105 |
-
return image, line_info
|
106 |
|
107 |
-
def
|
108 |
-
"""
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
return True
|
139 |
-
elif ccw2 == 0 and on_segment(A, B, D):
|
140 |
-
return True
|
141 |
-
elif ccw3 == 0 and on_segment(C, D, A):
|
142 |
-
return True
|
143 |
-
elif ccw4 == 0 and on_segment(C, D, B):
|
144 |
-
return True
|
145 |
-
else:
|
146 |
-
return False
|
147 |
-
|
148 |
-
def is_object_crossing_line(box, line_params):
|
149 |
-
"""
|
150 |
-
Determines if an object's bounding box is fully intersected by the user-drawn line.
|
151 |
-
"""
|
152 |
-
_, _, line_start, line_end = line_params
|
153 |
-
|
154 |
-
# Get the bounding box coordinates
|
155 |
-
x1, y1, x2, y2 = box
|
156 |
-
|
157 |
-
# Define the four edges of the bounding box
|
158 |
-
box_edges = [
|
159 |
-
((x1, y1), (x2, y1)), # Top edge
|
160 |
-
((x2, y1), (x2, y2)), # Right edge
|
161 |
-
((x2, y2), (x1, y2)), # Bottom edge
|
162 |
-
((x1, y2), (x1, y1)) # Left edge
|
163 |
-
]
|
164 |
-
|
165 |
-
# Count the number of intersections between the line and the bounding box edges
|
166 |
-
intersection_count = 0
|
167 |
-
for edge_start, edge_end in box_edges:
|
168 |
-
if intersect(line_start, line_end, edge_start, edge_end):
|
169 |
-
intersection_count += 1
|
170 |
-
|
171 |
-
# Only count the object if the line intersects the bounding box at least twice
|
172 |
-
return intersection_count >= 2
|
173 |
-
|
174 |
-
def draw_angled_line(image, line_params, color=(0, 255, 0), thickness=2):
|
175 |
-
"""
|
176 |
-
Draws the user-defined line on the frame.
|
177 |
-
"""
|
178 |
-
_, _, start_point, end_point = line_params
|
179 |
-
cv2.line(image, start_point, end_point, color, thickness)
|
180 |
|
181 |
def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=None):
|
182 |
-
"""
|
183 |
-
Processes the IP camera stream to count objects of the selected classes crossing the line.
|
184 |
-
"""
|
185 |
global line_params
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
errors.append("Error: No line drawn. Please draw a line on the first frame.")
|
191 |
-
if selected_classes is None or len(selected_classes) == 0:
|
192 |
-
errors.append("Error: No classes selected. Please select at least one class to detect.")
|
193 |
-
if stream_url is None or stream_url.strip() == "":
|
194 |
-
errors.append("Error: No stream URL provided.")
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
cap = cv2.VideoCapture(stream_url)
|
201 |
if not cap.isOpened():
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
crossed_objects = {}
|
207 |
-
max_tracked_objects = 1000 # Maximum number of objects to track before clearing
|
208 |
|
209 |
-
logger.info("Starting to process the stream...")
|
210 |
while cap.isOpened():
|
211 |
ret, frame = cap.read()
|
212 |
if not ret:
|
213 |
-
errors.append("Error: Could not read frame from the stream.")
|
214 |
break
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
if results[0].boxes.id is not None:
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
# Visualize the results with bounding boxes, masks, and IDs
|
236 |
annotated_frame = results[0].plot()
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
# Display the count on the frame with a modern look
|
242 |
-
count = len(crossed_objects)
|
243 |
-
(text_width, text_height), _ = cv2.getTextSize(f"COUNT: {count}", cv2.FONT_HERSHEY_SIMPLEX, 1, 2)
|
244 |
-
|
245 |
-
# Calculate the position for the middle of the top
|
246 |
-
margin = 10 # Margin from the top
|
247 |
-
x = (annotated_frame.shape[1] - text_width) // 2 # Center-align the text horizontally
|
248 |
-
y = text_height + margin # Top-align the text
|
249 |
-
|
250 |
-
# Draw the black background rectangle
|
251 |
-
cv2.rectangle(annotated_frame, (x - margin, y - text_height - margin), (x + text_width + margin, y + margin), (0, 0, 0), -1)
|
252 |
-
|
253 |
-
# Draw the text
|
254 |
-
cv2.putText(annotated_frame, f"COUNT: {count}", (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
255 |
-
|
256 |
-
# Yield the annotated frame to Gradio
|
257 |
yield annotated_frame, ""
|
258 |
|
259 |
cap.release()
|
260 |
-
logger.info("Stream processing completed.")
|
261 |
-
|
262 |
-
# Define the Gradio interface
|
263 |
-
with gr.Blocks() as demo:
|
264 |
-
gr.Markdown("<h1>Real-time monitoring, object tracking, and line-crossing detection for CCTV camera streams.</h1></center>")
|
265 |
-
gr.Markdown("## https://github.com/SanshruthR/CCTV_SENTRY_YOLO11")
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
# Step 1: Enter the IP Camera Stream URL
|
270 |
-
# gr.Markdown("### Step 0: Enter the IP Camera Stream URL")
|
271 |
-
# stream_url = gr.Textbox(label="Enter IP Camera Stream URL", value="https://s103.ipcamlive.com/streams/67n4ojknye7lkxpmf/stream.m3u8", visible=False)
|
272 |
-
stream_url = gr.Textbox(label="Enter IP Camera Stream URL", value="https://s104.ipcamlive.com/streams/68idokwtondsqpmkr/stream.m3u8", visible=False)
|
273 |
-
|
274 |
-
# Step 1: Extract the first frame from the stream
|
275 |
-
gr.Markdown("### Step 1: Click on the frame to draw a line, the objects crossing it would be counted in real-time.")
|
276 |
-
first_frame, status = extract_first_frame(stream_url.value)
|
277 |
-
if first_frame is None:
|
278 |
-
gr.Markdown(f"**Error:** {status}")
|
279 |
-
else:
|
280 |
-
# Image component for displaying the first frame
|
281 |
-
image = gr.Image(value=first_frame, label="First Frame of Stream", type="pil")
|
282 |
-
|
283 |
-
|
284 |
-
line_info = gr.Textbox(label="Line Coordinates", value="Line Coordinates:\nStart: None, End: None")
|
285 |
-
image.select(update_line, inputs=image, outputs=[image, line_info])
|
286 |
-
|
287 |
-
# Reset the line (optional)
|
288 |
-
# gr.Markdown("### Step 4: Reset the Line (Optional)")
|
289 |
-
# reset_button = gr.Button("Reset Line")
|
290 |
-
# reset_button.click(reset_line, inputs=None, outputs=[image, line_info])
|
291 |
-
|
292 |
-
# Step 2: Select classes to detect
|
293 |
-
gr.Markdown("### Step 2: Select Classes to Detect")
|
294 |
-
model = YOLO(model="yolo11n.pt") # Load the model to get class names
|
295 |
-
class_names = list(model.names.values()) # Get class names
|
296 |
-
selected_classes = gr.CheckboxGroup(choices=class_names, label="Select Classes to Detect")
|
297 |
-
|
298 |
-
# Step 3: Adjust confidence threshold
|
299 |
-
gr.Markdown("### Step 3: Adjust Confidence Threshold (Optional)")
|
300 |
-
confidence_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Confidence Threshold")
|
301 |
-
|
302 |
-
#process the stream
|
303 |
-
process_button = gr.Button("Process Stream")
|
304 |
-
|
305 |
-
# Output image for real-time frame rendering
|
306 |
-
output_image = gr.Image(label="Processed Frame", streaming=True)
|
307 |
-
|
308 |
-
# Error box to display warnings/errors
|
309 |
-
error_box = gr.Textbox(label="Errors/Warnings", interactive=False)
|
310 |
-
|
311 |
-
# Event listener for processing the video
|
312 |
-
process_button.click(process_video, inputs=[confidence_threshold, selected_classes, stream_url], outputs=[output_image, error_box])
|
313 |
|
314 |
-
# Launch the interface
|
315 |
-
demo.launch(debug=True)
|
|
|
1 |
+
# Maximize CPU usage and GPU utilization
|
|
|
|
|
2 |
import multiprocessing
|
3 |
import cv2
|
4 |
|
|
|
12 |
print(f"OpenCV using {cv2.getNumThreads()} threads out of {cpu_cores} available cores")
|
13 |
|
14 |
##############
|
15 |
+
import torch
|
16 |
import gradio as gr
|
17 |
import numpy as np
|
18 |
from PIL import Image, ImageDraw
|
|
|
30 |
end_point = None
|
31 |
line_params = None # Stores (slope, intercept) of the line
|
32 |
|
33 |
+
# Initialize model once
|
34 |
+
model = YOLO('yolov8n.pt') # Use smaller model if needed
|
35 |
+
# Check for GPU availability
|
36 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
37 |
+
model.to(device)
|
38 |
+
logger.info(f"Using device: {device}")
|
39 |
+
|
40 |
+
# Video processing parameters
|
41 |
+
FRAME_SKIP = 1 # Process every nth frame
|
42 |
+
FRAME_SCALE = 0.5 # Scale factor for input frames
|
43 |
+
|
44 |
def extract_first_frame(stream_url):
|
45 |
+
"""Extracts the first available frame from the IP camera stream."""
|
46 |
+
logger.info("Extracting first frame...")
|
|
|
|
|
47 |
cap = cv2.VideoCapture(stream_url)
|
48 |
if not cap.isOpened():
|
49 |
+
logger.error("Could not open stream.")
|
50 |
return None, "Error: Could not open stream."
|
51 |
|
52 |
ret, frame = cap.read()
|
53 |
cap.release()
|
54 |
|
55 |
if not ret:
|
56 |
+
logger.error("Could not read frame.")
|
57 |
+
return None, "Error: Could not read frame."
|
58 |
|
|
|
59 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
60 |
+
return Image.fromarray(frame_rgb), "First frame extracted."
|
|
|
|
|
|
|
61 |
|
62 |
def update_line(image, evt: gr.SelectData):
|
63 |
+
"""Updates the line based on user interaction."""
|
|
|
|
|
64 |
global start_point, end_point, line_params
|
65 |
|
|
|
66 |
if start_point is None:
|
67 |
start_point = (evt.index[0], evt.index[1])
|
|
|
|
|
68 |
draw = ImageDraw.Draw(image)
|
69 |
+
draw.ellipse((start_point[0]-5, start_point[1]-5, start_point[0]+5, start_point[1]+5),
|
70 |
+
fill="blue", outline="blue")
|
71 |
+
return image, f"Line Start: {start_point}"
|
|
|
72 |
|
|
|
|
|
|
|
73 |
end_point = (evt.index[0], evt.index[1])
|
74 |
+
draw = ImageDraw.Draw(image)
|
75 |
+
draw.line([start_point, end_point], fill="red", width=2)
|
76 |
+
draw.ellipse((end_point[0]-5, end_point[1]-5, end_point[0]+5, end_point[1]+5),
|
77 |
+
fill="green", outline="green")
|
78 |
|
79 |
+
# Calculate line parameters
|
80 |
+
if start_point[0] != end_point[0]:
|
81 |
slope = (end_point[1] - start_point[1]) / (end_point[0] - start_point[0])
|
82 |
intercept = start_point[1] - slope * start_point[0]
|
83 |
+
line_params = (slope, intercept, start_point, end_point)
|
84 |
else:
|
|
|
85 |
line_params = (float('inf'), start_point[0], start_point, end_point)
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
start_point = None
|
88 |
+
return image, f"Line: {line_params[0]:.2f}x + {line_params[1]:.2f}"
|
|
|
|
|
89 |
|
90 |
+
def optimized_intersection_check(box, line_params):
|
91 |
+
"""Optimized line-box intersection check using vector math."""
|
92 |
+
_, _, (x1, y1), (x2, y2) = line_params
|
93 |
+
box_x1, box_y1, box_x2, box_y2 = box
|
94 |
+
|
95 |
+
# Convert line to parametric form
|
96 |
+
dx = x2 - x1
|
97 |
+
dy = y2 - y1
|
98 |
+
|
99 |
+
# Check if any box edge intersects the line
|
100 |
+
t_near = -float('inf')
|
101 |
+
t_far = float('inf')
|
102 |
+
|
103 |
+
for i in range(2):
|
104 |
+
if dx == 0 and dy == 0:
|
105 |
+
continue
|
106 |
+
|
107 |
+
if i == 0: # X-axis
|
108 |
+
t0 = (box_x1 - x1) / dx if dx != 0 else 0
|
109 |
+
t1 = (box_x2 - x1) / dx if dx != 0 else 0
|
110 |
+
else: # Y-axis
|
111 |
+
t0 = (box_y1 - y1) / dy if dy != 0 else 0
|
112 |
+
t1 = (box_y2 - y1) / dy if dy != 0 else 0
|
113 |
+
|
114 |
+
t_min = min(t0, t1)
|
115 |
+
t_max = max(t0, t1)
|
116 |
+
|
117 |
+
if t_min > t_near: t_near = t_min
|
118 |
+
if t_max < t_far: t_far = t_max
|
119 |
+
|
120 |
+
return t_near <= t_far and t_near <= 1 and t_far >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=None):
|
123 |
+
"""Optimized video processing pipeline."""
|
|
|
|
|
124 |
global line_params
|
125 |
|
126 |
+
# Validation checks
|
127 |
+
if not line_params or not selected_classes or not stream_url:
|
128 |
+
return None, "Missing configuration parameters"
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
# Convert to set for faster lookups
|
131 |
+
selected_classes = set(selected_classes)
|
132 |
+
|
133 |
+
# Video capture setup
|
134 |
cap = cv2.VideoCapture(stream_url)
|
135 |
if not cap.isOpened():
|
136 |
+
return None, "Error opening stream"
|
137 |
+
|
138 |
+
crossed_objects = set()
|
139 |
+
frame_count = 0
|
|
|
|
|
140 |
|
|
|
141 |
while cap.isOpened():
|
142 |
ret, frame = cap.read()
|
143 |
if not ret:
|
|
|
144 |
break
|
145 |
+
|
146 |
+
frame_count += 1
|
147 |
+
if frame_count % FRAME_SKIP != 0:
|
148 |
+
continue
|
149 |
+
|
150 |
+
# Preprocess frame
|
151 |
+
frame = cv2.resize(frame, None, fx=FRAME_SCALE, fy=FRAME_SCALE)
|
152 |
+
|
153 |
+
# Object detection
|
154 |
+
results = model.track(
|
155 |
+
frame,
|
156 |
+
persist=True,
|
157 |
+
conf=confidence_threshold,
|
158 |
+
verbose=False,
|
159 |
+
device=device,
|
160 |
+
tracker="botsort.yaml" # Use optimized tracker config
|
161 |
+
)
|
162 |
+
|
163 |
+
# Process detections
|
164 |
if results[0].boxes.id is not None:
|
165 |
+
boxes = results[0].boxes.xyxy.cpu().numpy()
|
166 |
+
track_ids = results[0].boxes.id.int().cpu().numpy()
|
167 |
+
classes = results[0].boxes.cls.cpu().numpy()
|
168 |
+
|
169 |
+
for box, track_id, cls in zip(boxes, track_ids, classes):
|
170 |
+
if model.names[int(cls)] not in selected_classes:
|
171 |
+
continue
|
172 |
+
|
173 |
+
if optimized_intersection_check(box, line_params) and track_id not in crossed_objects:
|
174 |
+
crossed_objects.add(track_id)
|
175 |
+
if len(crossed_objects) > 1000:
|
176 |
+
crossed_objects.clear()
|
177 |
+
|
178 |
+
# Annotation
|
|
|
|
|
179 |
annotated_frame = results[0].plot()
|
180 |
+
cv2.line(annotated_frame, line_params[2], line_params[3], (0,255,0), 2)
|
181 |
+
cv2.putText(annotated_frame, f"COUNT: {len(crossed_objects)}",
|
182 |
+
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 2)
|
183 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
yield annotated_frame, ""
|
185 |
|
186 |
cap.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
|
|
|