Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
-
|
|
|
|
|
2 |
import multiprocessing
|
3 |
import cv2
|
4 |
|
@@ -176,7 +178,7 @@ def draw_angled_line(image, line_params, color=(0, 255, 0), thickness=2):
|
|
176 |
_, _, start_point, end_point = line_params
|
177 |
cv2.line(image, start_point, end_point, color, thickness)
|
178 |
|
179 |
-
def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=None
|
180 |
"""
|
181 |
Processes the IP camera stream to count objects of the selected classes crossing the line.
|
182 |
"""
|
@@ -211,19 +213,8 @@ def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=No
|
|
211 |
errors.append("Error: Could not read frame from the stream.")
|
212 |
break
|
213 |
|
214 |
-
#
|
215 |
-
|
216 |
-
|
217 |
-
# Resize the frame for processing
|
218 |
-
new_width = int(original_width * resolution_scale)
|
219 |
-
new_height = int(original_height * resolution_scale)
|
220 |
-
resized_frame = cv2.resize(frame, (new_width, new_height))
|
221 |
-
|
222 |
-
# Perform object tracking with confidence threshold on the resized frame
|
223 |
-
results = model.track(resized_frame, persist=True, conf=confidence_threshold)
|
224 |
-
|
225 |
-
# Create an annotator for the original frame
|
226 |
-
annotator = Annotator(frame, line_width=2)
|
227 |
|
228 |
if results[0].boxes.id is not None:
|
229 |
track_ids = results[0].boxes.id.int().cpu().tolist()
|
@@ -233,13 +224,6 @@ def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=No
|
|
233 |
|
234 |
for box, cls, t_id, conf in zip(boxes, clss, track_ids, confs):
|
235 |
if conf >= confidence_threshold and model.names[cls] in selected_classes:
|
236 |
-
# Scale the bounding box back to the original resolution
|
237 |
-
box = box * (original_width / new_width)
|
238 |
-
box = box.int().tolist()
|
239 |
-
|
240 |
-
# Draw the bounding box on the original frame
|
241 |
-
annotator.box_label(box, label=f"{model.names[cls]} {conf:.2f}", color=colors(cls))
|
242 |
-
|
243 |
# Check if the object crosses the line
|
244 |
if is_object_crossing_line(box, line_params) and t_id not in crossed_objects:
|
245 |
crossed_objects[t_id] = True
|
@@ -248,8 +232,11 @@ def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=No
|
|
248 |
if len(crossed_objects) > max_tracked_objects:
|
249 |
crossed_objects.clear()
|
250 |
|
251 |
-
#
|
252 |
-
|
|
|
|
|
|
|
253 |
|
254 |
# Display the count on the frame with a modern look
|
255 |
count = len(crossed_objects)
|
@@ -257,17 +244,17 @@ def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=No
|
|
257 |
|
258 |
# Calculate the position for the middle of the top
|
259 |
margin = 10 # Margin from the top
|
260 |
-
x = (
|
261 |
y = text_height + margin # Top-align the text
|
262 |
|
263 |
# Draw the black background rectangle
|
264 |
-
cv2.rectangle(
|
265 |
|
266 |
# Draw the text
|
267 |
-
cv2.putText(
|
268 |
|
269 |
# Yield the annotated frame to Gradio
|
270 |
-
yield
|
271 |
|
272 |
cap.release()
|
273 |
logger.info("Stream processing completed.")
|
@@ -277,7 +264,11 @@ with gr.Blocks() as demo:
|
|
277 |
gr.Markdown("<h1>Real-time monitoring, object tracking, and line-crossing detection for CCTV camera streams.</h1></center>")
|
278 |
gr.Markdown("## https://github.com/SanshruthR/CCTV_SENTRY_YOLO11")
|
279 |
|
|
|
|
|
280 |
# Step 1: Enter the IP Camera Stream URL
|
|
|
|
|
281 |
stream_url = gr.Textbox(label="Enter IP Camera Stream URL", value="https://s104.ipcamlive.com/streams/68idokwtondsqpmkr/stream.m3u8", visible=False)
|
282 |
|
283 |
# Step 1: Extract the first frame from the stream
|
@@ -289,9 +280,15 @@ with gr.Blocks() as demo:
|
|
289 |
# Image component for displaying the first frame
|
290 |
image = gr.Image(value=first_frame, label="First Frame of Stream", type="pil")
|
291 |
|
|
|
292 |
line_info = gr.Textbox(label="Line Coordinates", value="Line Coordinates:\nStart: None, End: None")
|
293 |
image.select(update_line, inputs=image, outputs=[image, line_info])
|
294 |
|
|
|
|
|
|
|
|
|
|
|
295 |
# Step 2: Select classes to detect
|
296 |
gr.Markdown("### Step 2: Select Classes to Detect")
|
297 |
model = YOLO(model="yolo11n.pt") # Load the model to get class names
|
@@ -302,11 +299,7 @@ with gr.Blocks() as demo:
|
|
302 |
gr.Markdown("### Step 3: Adjust Confidence Threshold (Optional)")
|
303 |
confidence_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Confidence Threshold")
|
304 |
|
305 |
-
#
|
306 |
-
gr.Markdown("### Step 4: Adjust Resolution Scale (Optional)")
|
307 |
-
resolution_scale = gr.Slider(minimum=0.1, maximum=1.0, value=1.0, label="Resolution Scale")
|
308 |
-
|
309 |
-
# Process the stream
|
310 |
process_button = gr.Button("Process Stream")
|
311 |
|
312 |
# Output image for real-time frame rendering
|
@@ -316,7 +309,7 @@ with gr.Blocks() as demo:
|
|
316 |
error_box = gr.Textbox(label="Errors/Warnings", interactive=False)
|
317 |
|
318 |
# Event listener for processing the video
|
319 |
-
process_button.click(process_video, inputs=[confidence_threshold, selected_classes, stream_url
|
320 |
|
321 |
# Launch the interface
|
322 |
demo.launch(debug=True)
|
|
|
1 |
+
##############
|
2 |
+
|
3 |
+
#Maximize CPU usage
|
4 |
import multiprocessing
|
5 |
import cv2
|
6 |
|
|
|
178 |
_, _, start_point, end_point = line_params
|
179 |
cv2.line(image, start_point, end_point, color, thickness)
|
180 |
|
181 |
+
def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=None):
|
182 |
"""
|
183 |
Processes the IP camera stream to count objects of the selected classes crossing the line.
|
184 |
"""
|
|
|
213 |
errors.append("Error: Could not read frame from the stream.")
|
214 |
break
|
215 |
|
216 |
+
# Perform object tracking with confidence threshold
|
217 |
+
results = model.track(frame, persist=True, conf=confidence_threshold)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
if results[0].boxes.id is not None:
|
220 |
track_ids = results[0].boxes.id.int().cpu().tolist()
|
|
|
224 |
|
225 |
for box, cls, t_id, conf in zip(boxes, clss, track_ids, confs):
|
226 |
if conf >= confidence_threshold and model.names[cls] in selected_classes:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
# Check if the object crosses the line
|
228 |
if is_object_crossing_line(box, line_params) and t_id not in crossed_objects:
|
229 |
crossed_objects[t_id] = True
|
|
|
232 |
if len(crossed_objects) > max_tracked_objects:
|
233 |
crossed_objects.clear()
|
234 |
|
235 |
+
# Visualize the results with bounding boxes, masks, and IDs
|
236 |
+
annotated_frame = results[0].plot()
|
237 |
+
|
238 |
+
# Draw the angled line on the frame
|
239 |
+
draw_angled_line(annotated_frame, line_params, color=(0, 255, 0), thickness=2)
|
240 |
|
241 |
# Display the count on the frame with a modern look
|
242 |
count = len(crossed_objects)
|
|
|
244 |
|
245 |
# Calculate the position for the middle of the top
|
246 |
margin = 10 # Margin from the top
|
247 |
+
x = (annotated_frame.shape[1] - text_width) // 2 # Center-align the text horizontally
|
248 |
y = text_height + margin # Top-align the text
|
249 |
|
250 |
# Draw the black background rectangle
|
251 |
+
cv2.rectangle(annotated_frame, (x - margin, y - text_height - margin), (x + text_width + margin, y + margin), (0, 0, 0), -1)
|
252 |
|
253 |
# Draw the text
|
254 |
+
cv2.putText(annotated_frame, f"COUNT: {count}", (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
255 |
|
256 |
# Yield the annotated frame to Gradio
|
257 |
+
yield annotated_frame, ""
|
258 |
|
259 |
cap.release()
|
260 |
logger.info("Stream processing completed.")
|
|
|
264 |
gr.Markdown("<h1>Real-time monitoring, object tracking, and line-crossing detection for CCTV camera streams.</h1></center>")
|
265 |
gr.Markdown("## https://github.com/SanshruthR/CCTV_SENTRY_YOLO11")
|
266 |
|
267 |
+
|
268 |
+
|
269 |
# Step 1: Enter the IP Camera Stream URL
|
270 |
+
# gr.Markdown("### Step 0: Enter the IP Camera Stream URL")
|
271 |
+
# stream_url = gr.Textbox(label="Enter IP Camera Stream URL", value="https://s103.ipcamlive.com/streams/67n4ojknye7lkxpmf/stream.m3u8", visible=False)
|
272 |
stream_url = gr.Textbox(label="Enter IP Camera Stream URL", value="https://s104.ipcamlive.com/streams/68idokwtondsqpmkr/stream.m3u8", visible=False)
|
273 |
|
274 |
# Step 1: Extract the first frame from the stream
|
|
|
280 |
# Image component for displaying the first frame
|
281 |
image = gr.Image(value=first_frame, label="First Frame of Stream", type="pil")
|
282 |
|
283 |
+
|
284 |
line_info = gr.Textbox(label="Line Coordinates", value="Line Coordinates:\nStart: None, End: None")
|
285 |
image.select(update_line, inputs=image, outputs=[image, line_info])
|
286 |
|
287 |
+
# Reset the line (optional)
|
288 |
+
# gr.Markdown("### Step 4: Reset the Line (Optional)")
|
289 |
+
# reset_button = gr.Button("Reset Line")
|
290 |
+
# reset_button.click(reset_line, inputs=None, outputs=[image, line_info])
|
291 |
+
|
292 |
# Step 2: Select classes to detect
|
293 |
gr.Markdown("### Step 2: Select Classes to Detect")
|
294 |
model = YOLO(model="yolo11n.pt") # Load the model to get class names
|
|
|
299 |
gr.Markdown("### Step 3: Adjust Confidence Threshold (Optional)")
|
300 |
confidence_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Confidence Threshold")
|
301 |
|
302 |
+
#process the stream
|
|
|
|
|
|
|
|
|
303 |
process_button = gr.Button("Process Stream")
|
304 |
|
305 |
# Output image for real-time frame rendering
|
|
|
309 |
error_box = gr.Textbox(label="Errors/Warnings", interactive=False)
|
310 |
|
311 |
# Event listener for processing the video
|
312 |
+
process_button.click(process_video, inputs=[confidence_threshold, selected_classes, stream_url], outputs=[output_image, error_box])
|
313 |
|
314 |
# Launch the interface
|
315 |
demo.launch(debug=True)
|