Sanshruth commited on
Commit
2b307a5
·
verified ·
1 Parent(s): ef69651

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +90 -30
app.py CHANGED
@@ -180,24 +180,30 @@ def draw_angled_line(image, line_params, color=(0, 255, 0), thickness=2):
180
  _, _, start_point, end_point = line_params
181
  cv2.line(image, start_point, end_point, color, thickness)
182
 
 
183
  def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=None):
184
  """
185
- Processes the IP camera stream with batch processing for faster performance.
186
  """
187
  global line_params
188
 
189
- if line_params is None or selected_classes is None or not stream_url:
190
- return None, "Error: Missing required parameters"
 
 
 
 
 
 
 
 
 
191
 
 
192
  cap = cv2.VideoCapture(stream_url)
193
  if not cap.isOpened():
194
- return None, "Error: Could not open stream"
195
-
196
- # Initialize variables
197
- frames_buffer = []
198
- crossed_objects = {}
199
- batch_size = 16
200
- max_tracked_objects = 1000
201
 
202
  # Set capture properties for better performance
203
  cap.set(cv2.CAP_PROP_BUFFERSIZE, 30)
@@ -205,58 +211,112 @@ def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=No
205
  cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG'))
206
 
207
  model = YOLO(model="yolo11n.pt")
 
 
 
 
208
 
 
209
  while cap.isOpened():
210
  ret, frame = cap.read()
211
  if not ret:
 
212
  break
213
 
214
  frames_buffer.append(frame)
215
 
216
  if len(frames_buffer) >= batch_size:
217
  # Process batch of frames
218
- results = model.track(frames_buffer, persist=True, conf=confidence_threshold, verbose=False)
219
 
220
- # Process each frame's results
221
- for frame_idx, result in enumerate(results):
222
  if result.boxes.id is not None:
223
  track_ids = result.boxes.id.int().cpu().tolist()
224
  clss = result.boxes.cls.cpu().tolist()
225
  boxes = result.boxes.xyxy.cpu()
226
  confs = result.boxes.conf.cpu().tolist()
227
 
228
- # Create annotated frame
229
- annotated_frame = frames_buffer[frame_idx].copy()
230
-
231
  for box, cls, t_id, conf in zip(boxes, clss, track_ids, confs):
232
  if conf >= confidence_threshold and model.names[cls] in selected_classes:
233
- # Check line crossing
234
  if is_object_crossing_line(box, line_params) and t_id not in crossed_objects:
235
  crossed_objects[t_id] = True
236
 
237
- # Clear if too many objects
238
  if len(crossed_objects) > max_tracked_objects:
239
  crossed_objects.clear()
240
 
241
- # Draw bounding box
242
- x1, y1, x2, y2 = map(int, box)
243
- cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
244
 
245
- # Draw line
246
- draw_angled_line(annotated_frame, line_params, color=(0, 255, 0), thickness=2)
247
 
248
- # Draw count
249
- count = len(crossed_objects)
250
- cv2.putText(annotated_frame, f"COUNT: {count}", (10, 30),
251
- cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
252
 
253
- # Yield the processed frame
254
- yield annotated_frame, ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255
 
256
- # Clear buffer after processing batch
257
  frames_buffer = []
258
 
259
  cap.release()
 
 
260
  # Define the Gradio interface
261
  with gr.Blocks() as demo:
262
  gr.Markdown("<h1>Real-time monitoring, object tracking, and line-crossing detection for CCTV camera streams.</h1></center>")
 
180
  _, _, start_point, end_point = line_params
181
  cv2.line(image, start_point, end_point, color, thickness)
182
 
183
+
184
  def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=None):
185
  """
186
+ Processes the IP camera stream to count objects of the selected classes crossing the line.
187
  """
188
  global line_params
189
 
190
+ errors = []
191
+
192
+ if line_params is None:
193
+ errors.append("Error: No line drawn. Please draw a line on the first frame.")
194
+ if selected_classes is None or len(selected_classes) == 0:
195
+ errors.append("Error: No classes selected. Please select at least one class to detect.")
196
+ if stream_url is None or stream_url.strip() == "":
197
+ errors.append("Error: No stream URL provided.")
198
+
199
+ if errors:
200
+ return None, "\n".join(errors)
201
 
202
+ logger.info("Connecting to the IP camera stream...")
203
  cap = cv2.VideoCapture(stream_url)
204
  if not cap.isOpened():
205
+ errors.append("Error: Could not open stream.")
206
+ return None, "\n".join(errors)
 
 
 
 
 
207
 
208
  # Set capture properties for better performance
209
  cap.set(cv2.CAP_PROP_BUFFERSIZE, 30)
 
211
  cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG'))
212
 
213
  model = YOLO(model="yolo11n.pt")
214
+ crossed_objects = {}
215
+ max_tracked_objects = 1000
216
+ frames_buffer = []
217
+ batch_size = 16
218
 
219
+ logger.info("Starting to process the stream...")
220
  while cap.isOpened():
221
  ret, frame = cap.read()
222
  if not ret:
223
+ errors.append("Error: Could not read frame from the stream.")
224
  break
225
 
226
  frames_buffer.append(frame)
227
 
228
  if len(frames_buffer) >= batch_size:
229
  # Process batch of frames
230
+ results = model.track(frames_buffer, persist=True, conf=confidence_threshold)
231
 
232
+ # Process and yield each frame immediately to maintain real-time appearance
233
+ for idx, result in enumerate(results):
234
  if result.boxes.id is not None:
235
  track_ids = result.boxes.id.int().cpu().tolist()
236
  clss = result.boxes.cls.cpu().tolist()
237
  boxes = result.boxes.xyxy.cpu()
238
  confs = result.boxes.conf.cpu().tolist()
239
 
 
 
 
240
  for box, cls, t_id, conf in zip(boxes, clss, track_ids, confs):
241
  if conf >= confidence_threshold and model.names[cls] in selected_classes:
 
242
  if is_object_crossing_line(box, line_params) and t_id not in crossed_objects:
243
  crossed_objects[t_id] = True
244
 
 
245
  if len(crossed_objects) > max_tracked_objects:
246
  crossed_objects.clear()
247
 
248
+ # Visualize the results with bounding boxes, masks, and IDs
249
+ annotated_frame = result.plot()
 
250
 
251
+ # Draw the angled line on the frame
252
+ draw_angled_line(annotated_frame, line_params, color=(0, 255, 0), thickness=2)
253
 
254
+ # Display the count on the frame with a modern look
255
+ count = len(crossed_objects)
256
+ (text_width, text_height), _ = cv2.getTextSize(f"COUNT: {count}", cv2.FONT_HERSHEY_SIMPLEX, 1, 2)
 
257
 
258
+ # Calculate the position for the middle of the top
259
+ margin = 10
260
+ x = (annotated_frame.shape[1] - text_width) // 2
261
+ y = text_height + margin
262
+
263
+ # Draw the black background rectangle
264
+ cv2.rectangle(annotated_frame,
265
+ (x - margin, y - text_height - margin),
266
+ (x + text_width + margin, y + margin),
267
+ (0, 0, 0), -1)
268
+
269
+ # Draw the text
270
+ cv2.putText(annotated_frame, f"COUNT: {count}",
271
+ (x, y), cv2.FONT_HERSHEY_SIMPLEX,
272
+ 1, (0, 255, 0), 2)
273
+
274
+ # Yield each frame as soon as it's processed
275
+ yield annotated_frame, ""
276
+
277
+ # Clear the buffer after processing
278
+ frames_buffer = []
279
+
280
+ # If we have remaining frames that don't make a full batch, process them too
281
+ elif frames_buffer:
282
+ results = model.track(frames_buffer, persist=True, conf=confidence_threshold)
283
+
284
+ for result in results:
285
+ if result.boxes.id is not None:
286
+ track_ids = result.boxes.id.int().cpu().tolist()
287
+ clss = result.boxes.cls.cpu().tolist()
288
+ boxes = result.boxes.xyxy.cpu()
289
+ confs = result.boxes.conf.cpu().tolist()
290
+
291
+ for box, cls, t_id, conf in zip(boxes, clss, track_ids, confs):
292
+ if conf >= confidence_threshold and model.names[cls] in selected_classes:
293
+ if is_object_crossing_line(box, line_params) and t_id not in crossed_objects:
294
+ crossed_objects[t_id] = True
295
+
296
+ annotated_frame = result.plot()
297
+ draw_angled_line(annotated_frame, line_params, color=(0, 255, 0), thickness=2)
298
+
299
+ count = len(crossed_objects)
300
+ (text_width, text_height), _ = cv2.getTextSize(f"COUNT: {count}", cv2.FONT_HERSHEY_SIMPLEX, 1, 2)
301
+ margin = 10
302
+ x = (annotated_frame.shape[1] - text_width) // 2
303
+ y = text_height + margin
304
+
305
+ cv2.rectangle(annotated_frame,
306
+ (x - margin, y - text_height - margin),
307
+ (x + text_width + margin, y + margin),
308
+ (0, 0, 0), -1)
309
+ cv2.putText(annotated_frame, f"COUNT: {count}",
310
+ (x, y), cv2.FONT_HERSHEY_SIMPLEX,
311
+ 1, (0, 255, 0), 2)
312
+
313
+ yield annotated_frame, ""
314
 
 
315
  frames_buffer = []
316
 
317
  cap.release()
318
+ logger.info("Stream processing completed.")
319
+
320
  # Define the Gradio interface
321
  with gr.Blocks() as demo:
322
  gr.Markdown("<h1>Real-time monitoring, object tracking, and line-crossing detection for CCTV camera streams.</h1></center>")