Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -182,85 +182,81 @@ def draw_angled_line(image, line_params, color=(0, 255, 0), thickness=2):
|
|
182 |
|
183 |
def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=None):
|
184 |
"""
|
185 |
-
Processes the IP camera stream
|
186 |
"""
|
187 |
global line_params
|
188 |
|
189 |
-
|
|
|
190 |
|
191 |
-
if line_params is None:
|
192 |
-
errors.append("Error: No line drawn. Please draw a line on the first frame.")
|
193 |
-
if selected_classes is None or len(selected_classes) == 0:
|
194 |
-
errors.append("Error: No classes selected. Please select at least one class to detect.")
|
195 |
-
if stream_url is None or stream_url.strip() == "":
|
196 |
-
errors.append("Error: No stream URL provided.")
|
197 |
-
|
198 |
-
if errors:
|
199 |
-
return None, "\n".join(errors)
|
200 |
-
|
201 |
-
logger.info("Connecting to the IP camera stream...")
|
202 |
cap = cv2.VideoCapture(stream_url)
|
203 |
if not cap.isOpened():
|
204 |
-
|
205 |
-
return None, "\n".join(errors)
|
206 |
|
207 |
-
|
|
|
208 |
crossed_objects = {}
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
-
logger.info("Starting to process the stream...")
|
212 |
while cap.isOpened():
|
213 |
ret, frame = cap.read()
|
214 |
if not ret:
|
215 |
-
errors.append("Error: Could not read frame from the stream.")
|
216 |
break
|
217 |
|
218 |
-
|
219 |
-
results = model.track(frame, persist=True, conf=confidence_threshold,iou=0.5,max_det=50,verbose=False)
|
220 |
|
221 |
-
if
|
222 |
-
|
223 |
-
|
224 |
-
boxes = results[0].boxes.xyxy.cpu()
|
225 |
-
confs = results[0].boxes.conf.cpu().tolist()
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
|
|
|
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
crossed_objects.clear()
|
236 |
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
239 |
|
240 |
-
|
241 |
-
|
|
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
x = (annotated_frame.shape[1] - text_width) // 2 # Center-align the text horizontally
|
250 |
-
y = text_height + margin # Top-align the text
|
251 |
|
252 |
-
|
253 |
-
|
|
|
|
|
254 |
|
255 |
-
|
256 |
-
|
257 |
|
258 |
-
|
259 |
-
|
260 |
|
261 |
cap.release()
|
262 |
-
logger.info("Stream processing completed.")
|
263 |
-
|
264 |
# Define the Gradio interface
|
265 |
with gr.Blocks() as demo:
|
266 |
gr.Markdown("<h1>Real-time monitoring, object tracking, and line-crossing detection for CCTV camera streams.</h1></center>")
|
|
|
182 |
|
183 |
def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=None):
|
184 |
"""
|
185 |
+
Processes the IP camera stream with batch processing for faster performance.
|
186 |
"""
|
187 |
global line_params
|
188 |
|
189 |
+
if line_params is None or selected_classes is None or not stream_url:
|
190 |
+
return None, "Error: Missing required parameters"
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
cap = cv2.VideoCapture(stream_url)
|
193 |
if not cap.isOpened():
|
194 |
+
return None, "Error: Could not open stream"
|
|
|
195 |
|
196 |
+
# Initialize variables
|
197 |
+
frames_buffer = []
|
198 |
crossed_objects = {}
|
199 |
+
batch_size = 16
|
200 |
+
max_tracked_objects = 1000
|
201 |
+
|
202 |
+
# Set capture properties for better performance
|
203 |
+
cap.set(cv2.CAP_PROP_BUFFERSIZE, 30)
|
204 |
+
cap.set(cv2.CAP_PROP_FPS, 30)
|
205 |
+
cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG'))
|
206 |
+
|
207 |
+
model = YOLO(model="yolo11n.pt")
|
208 |
|
|
|
209 |
while cap.isOpened():
|
210 |
ret, frame = cap.read()
|
211 |
if not ret:
|
|
|
212 |
break
|
213 |
|
214 |
+
frames_buffer.append(frame)
|
|
|
215 |
|
216 |
+
if len(frames_buffer) >= batch_size:
|
217 |
+
# Process batch of frames
|
218 |
+
results = model.track(frames_buffer, persist=True, conf=confidence_threshold, verbose=False)
|
|
|
|
|
219 |
|
220 |
+
# Process each frame's results
|
221 |
+
for frame_idx, result in enumerate(results):
|
222 |
+
if result.boxes.id is not None:
|
223 |
+
track_ids = result.boxes.id.int().cpu().tolist()
|
224 |
+
clss = result.boxes.cls.cpu().tolist()
|
225 |
+
boxes = result.boxes.xyxy.cpu()
|
226 |
+
confs = result.boxes.conf.cpu().tolist()
|
227 |
|
228 |
+
# Create annotated frame
|
229 |
+
annotated_frame = frames_buffer[frame_idx].copy()
|
|
|
230 |
|
231 |
+
for box, cls, t_id, conf in zip(boxes, clss, track_ids, confs):
|
232 |
+
if conf >= confidence_threshold and model.names[cls] in selected_classes:
|
233 |
+
# Check line crossing
|
234 |
+
if is_object_crossing_line(box, line_params) and t_id not in crossed_objects:
|
235 |
+
crossed_objects[t_id] = True
|
236 |
|
237 |
+
# Clear if too many objects
|
238 |
+
if len(crossed_objects) > max_tracked_objects:
|
239 |
+
crossed_objects.clear()
|
240 |
|
241 |
+
# Draw bounding box
|
242 |
+
x1, y1, x2, y2 = map(int, box)
|
243 |
+
cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
244 |
|
245 |
+
# Draw line
|
246 |
+
draw_angled_line(annotated_frame, line_params, color=(0, 255, 0), thickness=2)
|
|
|
|
|
247 |
|
248 |
+
# Draw count
|
249 |
+
count = len(crossed_objects)
|
250 |
+
cv2.putText(annotated_frame, f"COUNT: {count}", (10, 30),
|
251 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
252 |
|
253 |
+
# Yield the processed frame
|
254 |
+
yield annotated_frame, ""
|
255 |
|
256 |
+
# Clear buffer after processing batch
|
257 |
+
frames_buffer = []
|
258 |
|
259 |
cap.release()
|
|
|
|
|
260 |
# Define the Gradio interface
|
261 |
with gr.Blocks() as demo:
|
262 |
gr.Markdown("<h1>Real-time monitoring, object tracking, and line-crossing detection for CCTV camera streams.</h1></center>")
|