Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,171 +2,226 @@
|
|
2 |
import multiprocessing
|
3 |
import cv2
|
4 |
|
|
|
|
|
|
|
5 |
# Set OpenCV to use all available cores
|
6 |
-
cv2.setNumThreads(
|
|
|
|
|
|
|
7 |
|
8 |
##############
|
|
|
9 |
import gradio as gr
|
10 |
import numpy as np
|
11 |
from PIL import Image, ImageDraw
|
12 |
from ultralytics import YOLO
|
|
|
13 |
import logging
|
|
|
|
|
14 |
|
15 |
# Set up logging
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
-
# Global variables
|
20 |
-
start_point =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def extract_first_frame(stream_url):
|
23 |
-
"""Extracts first frame from IP camera"""
|
|
|
24 |
cap = cv2.VideoCapture(stream_url)
|
25 |
if not cap.isOpened():
|
26 |
return None, "Error: Could not open stream."
|
27 |
-
|
28 |
ret, frame = cap.read()
|
29 |
cap.release()
|
30 |
-
|
31 |
if not ret:
|
32 |
return None, "Error: Could not read frame."
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
def update_line(image, evt: gr.SelectData):
|
37 |
"""Handles line drawing interactions"""
|
38 |
global start_point, end_point, line_params
|
39 |
-
|
40 |
-
if
|
41 |
start_point = (evt.index[0], evt.index[1])
|
42 |
draw = ImageDraw.Draw(image)
|
43 |
draw.ellipse((start_point[0]-5, start_point[1]-5, start_point[0]+5, start_point[1]+5),
|
44 |
fill="blue", outline="blue")
|
45 |
-
return image, f"
|
46 |
-
|
47 |
end_point = (evt.index[0], evt.index[1])
|
|
|
|
|
48 |
draw = ImageDraw.Draw(image)
|
49 |
draw.line([start_point, end_point], fill="red", width=2)
|
50 |
draw.ellipse((end_point[0]-5, end_point[1]-5, end_point[0]+5, end_point[1]+5),
|
51 |
fill="green", outline="green")
|
52 |
-
|
53 |
-
# Calculate line parameters
|
54 |
-
if start_point[0] != end_point[0]:
|
55 |
-
slope = (end_point[1] - start_point[1]) / (end_point[0] - start_point[0])
|
56 |
-
intercept = start_point[1] - slope * start_point[0]
|
57 |
-
line_params = (slope, intercept, start_point, end_point)
|
58 |
-
else:
|
59 |
-
line_params = (float('inf'), start_point[0], start_point, end_point)
|
60 |
-
|
61 |
start_point = None
|
62 |
-
return image, f"Line: {line_params[
|
63 |
|
64 |
-
def
|
65 |
-
"""
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)
|
70 |
|
71 |
-
def
|
72 |
-
"""
|
73 |
if not line_params:
|
74 |
return False
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
intersections += 1
|
88 |
-
if intersections >= 2:
|
89 |
-
return True
|
90 |
-
return False
|
91 |
-
|
92 |
-
def process_video(conf=0.5, classes=None, stream_url=None):
|
93 |
-
"""Main processing function"""
|
94 |
global line_params
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
cap = cv2.VideoCapture(stream_url)
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
102 |
while cap.isOpened():
|
103 |
ret, frame = cap.read()
|
104 |
if not ret:
|
105 |
break
|
106 |
-
|
107 |
-
#
|
108 |
-
results = model.track(
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
if results[0].boxes.id is not None:
|
112 |
-
boxes = results[0].boxes
|
113 |
-
|
114 |
-
clss =
|
115 |
-
|
116 |
-
for box,
|
117 |
-
if
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
cap.release()
|
130 |
|
131 |
-
# Gradio
|
132 |
-
with gr.Blocks() as
|
133 |
-
gr.Markdown("
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
img = gr.Image(label="Draw Detection Line", interactive=True)
|
141 |
-
line_info = gr.Textbox(label="Line Coordinates")
|
142 |
-
|
143 |
-
# Controls
|
144 |
-
classes = gr.CheckboxGroup(label="Classes", choices=[
|
145 |
-
"person", "car", "truck", "motorcycle"
|
146 |
-
], value=["person"])
|
147 |
-
conf = gr.Slider(0.1, 1.0, value=0.4, label="Confidence Threshold")
|
148 |
-
|
149 |
-
# Output
|
150 |
-
video_out = gr.Image(label="Live View", streaming=True)
|
151 |
-
status = gr.Textbox(label="Status")
|
152 |
-
|
153 |
-
# Interactions
|
154 |
-
frame_btn.click(
|
155 |
-
extract_first_frame,
|
156 |
-
inputs=url,
|
157 |
-
outputs=[img, status]
|
158 |
-
)
|
159 |
-
|
160 |
-
img.select(
|
161 |
-
update_line,
|
162 |
-
inputs=img,
|
163 |
-
outputs=[img, line_info]
|
164 |
)
|
165 |
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
process_video,
|
168 |
-
inputs=[
|
169 |
-
outputs=[
|
170 |
)
|
171 |
|
172 |
-
|
|
|
2 |
import multiprocessing
|
3 |
import cv2
|
4 |
|
5 |
+
# Get the number of CPU cores
|
6 |
+
cpu_cores = multiprocessing.cpu_count()
|
7 |
+
|
8 |
# Set OpenCV to use all available cores
|
9 |
+
cv2.setNumThreads(cpu_cores)
|
10 |
+
|
11 |
+
# Print the number of threads being used (optional)
|
12 |
+
print(f"OpenCV using {cv2.getNumThreads()} threads out of {cpu_cores} available cores")
|
13 |
|
14 |
##############
|
15 |
+
import cv2
|
16 |
import gradio as gr
|
17 |
import numpy as np
|
18 |
from PIL import Image, ImageDraw
|
19 |
from ultralytics import YOLO
|
20 |
+
from ultralytics.utils.plotting import Annotator, colors
|
21 |
import logging
|
22 |
+
import math
|
23 |
+
import torch
|
24 |
|
25 |
# Set up logging
|
26 |
logging.basicConfig(level=logging.INFO)
|
27 |
logger = logging.getLogger(__name__)
|
28 |
|
29 |
+
# Global variables to store line coordinates and line equation
|
30 |
+
start_point = None
|
31 |
+
end_point = None
|
32 |
+
line_params = None # Stores (start_point, end_point)
|
33 |
+
|
34 |
+
# Load model once globally
|
35 |
+
model = YOLO("yolo11n.pt")
|
36 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
37 |
+
model = model.to(device)
|
38 |
+
|
39 |
+
def liang_barsky(line, bbox):
|
40 |
+
"""Optimized line-rectangle intersection check using Liang-Barsky algorithm"""
|
41 |
+
x1, y1 = line[0]
|
42 |
+
x2, y2 = line[1]
|
43 |
+
xmin, ymin, xmax, ymax = bbox
|
44 |
+
|
45 |
+
dx = x2 - x1
|
46 |
+
dy = y2 - y1
|
47 |
+
p = [-dx, dx, -dy, dy]
|
48 |
+
q = [x1 - xmin, xmax - x1, y1 - ymin, ymax - y1]
|
49 |
+
u1 = 0.0
|
50 |
+
u2 = 1.0
|
51 |
+
|
52 |
+
for i in range(4):
|
53 |
+
if p[i] == 0:
|
54 |
+
if q[i] < 0:
|
55 |
+
return False
|
56 |
+
continue
|
57 |
+
t = q[i] / p[i]
|
58 |
+
if p[i] < 0:
|
59 |
+
if t > u1:
|
60 |
+
u1 = t
|
61 |
+
else:
|
62 |
+
if t < u2:
|
63 |
+
u2 = t
|
64 |
+
|
65 |
+
return u1 <= u2
|
66 |
|
67 |
def extract_first_frame(stream_url):
|
68 |
+
"""Extracts the first available frame from the IP camera stream"""
|
69 |
+
logger.info("Extracting first frame...")
|
70 |
cap = cv2.VideoCapture(stream_url)
|
71 |
if not cap.isOpened():
|
72 |
return None, "Error: Could not open stream."
|
73 |
+
|
74 |
ret, frame = cap.read()
|
75 |
cap.release()
|
76 |
+
|
77 |
if not ret:
|
78 |
return None, "Error: Could not read frame."
|
79 |
+
|
80 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
81 |
+
return Image.fromarray(frame_rgb), "First frame extracted successfully."
|
82 |
|
83 |
def update_line(image, evt: gr.SelectData):
|
84 |
"""Handles line drawing interactions"""
|
85 |
global start_point, end_point, line_params
|
86 |
+
|
87 |
+
if start_point is None:
|
88 |
start_point = (evt.index[0], evt.index[1])
|
89 |
draw = ImageDraw.Draw(image)
|
90 |
draw.ellipse((start_point[0]-5, start_point[1]-5, start_point[0]+5, start_point[1]+5),
|
91 |
fill="blue", outline="blue")
|
92 |
+
return image, f"Line Coordinates:\nStart: {start_point}, End: None"
|
93 |
+
|
94 |
end_point = (evt.index[0], evt.index[1])
|
95 |
+
line_params = (start_point, end_point)
|
96 |
+
|
97 |
draw = ImageDraw.Draw(image)
|
98 |
draw.line([start_point, end_point], fill="red", width=2)
|
99 |
draw.ellipse((end_point[0]-5, end_point[1]-5, end_point[0]+5, end_point[1]+5),
|
100 |
fill="green", outline="green")
|
101 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
start_point = None
|
103 |
+
return image, f"Line Coordinates:\nStart: {line_params[0]}, End: {line_params[1]}"
|
104 |
|
105 |
+
def reset_line():
|
106 |
+
"""Resets line coordinates"""
|
107 |
+
global start_point, end_point, line_params
|
108 |
+
start_point = end_point = line_params = None
|
109 |
+
return None, "Line reset. Click to draw a new line."
|
|
|
110 |
|
111 |
+
def is_object_crossing_line(box, line_params):
|
112 |
+
"""Optimized line crossing check using Liang-Barsky algorithm"""
|
113 |
if not line_params:
|
114 |
return False
|
115 |
|
116 |
+
line_start, line_end = line_params
|
117 |
+
x1, y1, x2, y2 = box
|
118 |
+
return liang_barsky((line_start, line_end), (x1, y1, x2, y2))
|
119 |
+
|
120 |
+
def draw_angled_line(image, line_params, color=(0, 255, 0), thickness=2):
|
121 |
+
"""Draws the user-defined line on the frame"""
|
122 |
+
start, end = line_params
|
123 |
+
cv2.line(image, start, end, color, thickness)
|
124 |
+
|
125 |
+
def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=None):
|
126 |
+
"""Main video processing function with optimizations"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
global line_params
|
128 |
+
errors = []
|
129 |
+
|
130 |
+
if not line_params:
|
131 |
+
errors.append("Error: No line drawn.")
|
132 |
+
if not selected_classes:
|
133 |
+
errors.append("Error: No classes selected.")
|
134 |
+
if not stream_url:
|
135 |
+
errors.append("Error: No stream URL provided.")
|
136 |
+
if errors:
|
137 |
+
return None, "\n".join(errors)
|
138 |
+
|
139 |
+
# Convert class names to indices once
|
140 |
+
selected_class_indices = {i for i, name in model.names.items() if name in selected_classes}
|
141 |
+
|
142 |
cap = cv2.VideoCapture(stream_url)
|
143 |
+
cap.set(cv2.CAP_PROP_BUFFERSIZE, 1) # Reduce buffer size
|
144 |
+
if not cap.isOpened():
|
145 |
+
return None, "Error: Could not open stream."
|
146 |
+
|
147 |
+
crossed_objects = {}
|
148 |
+
max_tracked_objects = 1000
|
149 |
+
|
150 |
while cap.isOpened():
|
151 |
ret, frame = cap.read()
|
152 |
if not ret:
|
153 |
break
|
154 |
+
|
155 |
+
# Optimized inference
|
156 |
+
results = model.track(
|
157 |
+
frame,
|
158 |
+
persist=True,
|
159 |
+
conf=confidence_threshold,
|
160 |
+
half=True,
|
161 |
+
device=device,
|
162 |
+
verbose=False
|
163 |
+
)
|
164 |
+
|
165 |
if results[0].boxes.id is not None:
|
166 |
+
boxes = results[0].boxes
|
167 |
+
track_ids = boxes.id.int().cpu().tolist()
|
168 |
+
clss = boxes.cls.cpu().tolist()
|
169 |
+
|
170 |
+
for box, cls, t_id in zip(boxes.xyxy.cpu(), clss, track_ids):
|
171 |
+
if cls in selected_class_indices and t_id not in crossed_objects:
|
172 |
+
if is_object_crossing_line(box.numpy(), line_params):
|
173 |
+
crossed_objects[t_id] = True
|
174 |
+
if len(crossed_objects) > max_tracked_objects:
|
175 |
+
crossed_objects.clear()
|
176 |
+
|
177 |
+
# Visualization
|
178 |
+
annotated_frame = results[0].plot()
|
179 |
+
draw_angled_line(annotated_frame, line_params)
|
180 |
|
181 |
+
# Draw count
|
182 |
+
count = len(crossed_objects)
|
183 |
+
(w, h), _ = cv2.getTextSize(f"COUNT: {count}", cv2.FONT_HERSHEY_SIMPLEX, 1, 2)
|
184 |
+
cv2.rectangle(annotated_frame, (10, 10), (20 + w, 40 + h), (0, 0, 0), -1)
|
185 |
+
cv2.putText(annotated_frame, f"COUNT: {count}", (20, 40),
|
186 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
187 |
+
|
188 |
+
yield annotated_frame, ""
|
189 |
|
190 |
cap.release()
|
191 |
|
192 |
+
# Gradio interface remains unchanged
|
193 |
+
with gr.Blocks() as demo:
|
194 |
+
gr.Markdown("<h1>Real-time monitoring, object tracking, and line-crossing detection for CCTV camera streams.</h1>")
|
195 |
+
gr.Markdown("## https://github.com/SanshruthR/CCTV_SENTRY_YOLO11")
|
196 |
+
|
197 |
+
stream_url = gr.Textbox(
|
198 |
+
label="IP Camera Stream URL",
|
199 |
+
value="https://s104.ipcamlive.com/streams/68idokwtondsqpmkr/stream.m3u8",
|
200 |
+
visible=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
)
|
202 |
|
203 |
+
# First frame extraction
|
204 |
+
first_frame, status = extract_first_frame(stream_url.value)
|
205 |
+
image = gr.Image(value=first_frame, label="First Frame", type="pil") if first_frame else gr.Markdown(f"**Error:** {status}")
|
206 |
+
line_info = gr.Textbox(label="Line Coordinates", value="Line Coordinates:\nStart: None, End: None")
|
207 |
+
image.select(update_line, inputs=image, outputs=[image, line_info])
|
208 |
+
|
209 |
+
# Class selection
|
210 |
+
class_names = list(model.names.values())
|
211 |
+
selected_classes = gr.CheckboxGroup(choices=class_names, label="Select Classes to Detect")
|
212 |
+
|
213 |
+
# Confidence threshold
|
214 |
+
confidence_threshold = gr.Slider(0.0, 1.0, value=0.2, label="Confidence Threshold")
|
215 |
+
|
216 |
+
# Process button
|
217 |
+
process_button = gr.Button("Process Stream")
|
218 |
+
output_image = gr.Image(label="Processed Frame", streaming=True)
|
219 |
+
error_box = gr.Textbox(label="Errors/Warnings", interactive=False)
|
220 |
+
|
221 |
+
process_button.click(
|
222 |
process_video,
|
223 |
+
inputs=[confidence_threshold, selected_classes, stream_url],
|
224 |
+
outputs=[output_image, error_box]
|
225 |
)
|
226 |
|
227 |
+
demo.launch(debug=True)
|