Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,8 +14,6 @@ cv2.setNumThreads(cpu_cores)
|
|
| 14 |
print(f"OpenCV using {cv2.getNumThreads()} threads out of {cpu_cores} available cores")
|
| 15 |
|
| 16 |
##############
|
| 17 |
-
|
| 18 |
-
|
| 19 |
import cv2
|
| 20 |
import gradio as gr
|
| 21 |
import numpy as np
|
|
@@ -180,7 +178,6 @@ def draw_angled_line(image, line_params, color=(0, 255, 0), thickness=2):
|
|
| 180 |
_, _, start_point, end_point = line_params
|
| 181 |
cv2.line(image, start_point, end_point, color, thickness)
|
| 182 |
|
| 183 |
-
|
| 184 |
def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=None):
|
| 185 |
"""
|
| 186 |
Processes the IP camera stream to count objects of the selected classes crossing the line.
|
|
@@ -205,16 +202,9 @@ def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=No
|
|
| 205 |
errors.append("Error: Could not open stream.")
|
| 206 |
return None, "\n".join(errors)
|
| 207 |
|
| 208 |
-
# Set capture properties for better performance
|
| 209 |
-
cap.set(cv2.CAP_PROP_BUFFERSIZE, 30)
|
| 210 |
-
cap.set(cv2.CAP_PROP_FPS, 30)
|
| 211 |
-
cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG'))
|
| 212 |
-
|
| 213 |
model = YOLO(model="yolo11n.pt")
|
| 214 |
crossed_objects = {}
|
| 215 |
-
max_tracked_objects = 1000
|
| 216 |
-
frames_buffer = []
|
| 217 |
-
batch_size = 16
|
| 218 |
|
| 219 |
logger.info("Starting to process the stream...")
|
| 220 |
while cap.isOpened():
|
|
@@ -223,96 +213,48 @@ def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=No
|
|
| 223 |
errors.append("Error: Could not read frame from the stream.")
|
| 224 |
break
|
| 225 |
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
# Draw the text
|
| 270 |
-
cv2.putText(annotated_frame, f"COUNT: {count}",
|
| 271 |
-
(x, y), cv2.FONT_HERSHEY_SIMPLEX,
|
| 272 |
-
1, (0, 255, 0), 2)
|
| 273 |
-
|
| 274 |
-
# Yield each frame as soon as it's processed
|
| 275 |
-
yield annotated_frame, ""
|
| 276 |
-
|
| 277 |
-
# Clear the buffer after processing
|
| 278 |
-
frames_buffer = []
|
| 279 |
-
|
| 280 |
-
# If we have remaining frames that don't make a full batch, process them too
|
| 281 |
-
elif frames_buffer:
|
| 282 |
-
results = model.track(frames_buffer, persist=True, conf=confidence_threshold)
|
| 283 |
-
|
| 284 |
-
for result in results:
|
| 285 |
-
if result.boxes.id is not None:
|
| 286 |
-
track_ids = result.boxes.id.int().cpu().tolist()
|
| 287 |
-
clss = result.boxes.cls.cpu().tolist()
|
| 288 |
-
boxes = result.boxes.xyxy.cpu()
|
| 289 |
-
confs = result.boxes.conf.cpu().tolist()
|
| 290 |
-
|
| 291 |
-
for box, cls, t_id, conf in zip(boxes, clss, track_ids, confs):
|
| 292 |
-
if conf >= confidence_threshold and model.names[cls] in selected_classes:
|
| 293 |
-
if is_object_crossing_line(box, line_params) and t_id not in crossed_objects:
|
| 294 |
-
crossed_objects[t_id] = True
|
| 295 |
-
|
| 296 |
-
annotated_frame = result.plot()
|
| 297 |
-
draw_angled_line(annotated_frame, line_params, color=(0, 255, 0), thickness=2)
|
| 298 |
-
|
| 299 |
-
count = len(crossed_objects)
|
| 300 |
-
(text_width, text_height), _ = cv2.getTextSize(f"COUNT: {count}", cv2.FONT_HERSHEY_SIMPLEX, 1, 2)
|
| 301 |
-
margin = 10
|
| 302 |
-
x = (annotated_frame.shape[1] - text_width) // 2
|
| 303 |
-
y = text_height + margin
|
| 304 |
-
|
| 305 |
-
cv2.rectangle(annotated_frame,
|
| 306 |
-
(x - margin, y - text_height - margin),
|
| 307 |
-
(x + text_width + margin, y + margin),
|
| 308 |
-
(0, 0, 0), -1)
|
| 309 |
-
cv2.putText(annotated_frame, f"COUNT: {count}",
|
| 310 |
-
(x, y), cv2.FONT_HERSHEY_SIMPLEX,
|
| 311 |
-
1, (0, 255, 0), 2)
|
| 312 |
-
|
| 313 |
-
yield annotated_frame, ""
|
| 314 |
-
|
| 315 |
-
frames_buffer = []
|
| 316 |
|
| 317 |
cap.release()
|
| 318 |
logger.info("Stream processing completed.")
|
|
|
|
| 14 |
print(f"OpenCV using {cv2.getNumThreads()} threads out of {cpu_cores} available cores")
|
| 15 |
|
| 16 |
##############
|
|
|
|
|
|
|
| 17 |
import cv2
|
| 18 |
import gradio as gr
|
| 19 |
import numpy as np
|
|
|
|
| 178 |
_, _, start_point, end_point = line_params
|
| 179 |
cv2.line(image, start_point, end_point, color, thickness)
|
| 180 |
|
|
|
|
| 181 |
def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=None):
|
| 182 |
"""
|
| 183 |
Processes the IP camera stream to count objects of the selected classes crossing the line.
|
|
|
|
| 202 |
errors.append("Error: Could not open stream.")
|
| 203 |
return None, "\n".join(errors)
|
| 204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
model = YOLO(model="yolo11n.pt")
|
| 206 |
crossed_objects = {}
|
| 207 |
+
max_tracked_objects = 1000 # Maximum number of objects to track before clearing
|
|
|
|
|
|
|
| 208 |
|
| 209 |
logger.info("Starting to process the stream...")
|
| 210 |
while cap.isOpened():
|
|
|
|
| 213 |
errors.append("Error: Could not read frame from the stream.")
|
| 214 |
break
|
| 215 |
|
| 216 |
+
# Perform object tracking with confidence threshold
|
| 217 |
+
results = model.track(frame, persist=True, conf=confidence_threshold)
|
| 218 |
+
|
| 219 |
+
if results[0].boxes.id is not None:
|
| 220 |
+
track_ids = results[0].boxes.id.int().cpu().tolist()
|
| 221 |
+
clss = results[0].boxes.cls.cpu().tolist()
|
| 222 |
+
boxes = results[0].boxes.xyxy.cpu()
|
| 223 |
+
confs = results[0].boxes.conf.cpu().tolist()
|
| 224 |
+
|
| 225 |
+
for box, cls, t_id, conf in zip(boxes, clss, track_ids, confs):
|
| 226 |
+
if conf >= confidence_threshold and model.names[cls] in selected_classes:
|
| 227 |
+
# Check if the object crosses the line
|
| 228 |
+
if is_object_crossing_line(box, line_params) and t_id not in crossed_objects:
|
| 229 |
+
crossed_objects[t_id] = True
|
| 230 |
+
|
| 231 |
+
# Clear the dictionary if it gets too large
|
| 232 |
+
if len(crossed_objects) > max_tracked_objects:
|
| 233 |
+
crossed_objects.clear()
|
| 234 |
+
|
| 235 |
+
# Visualize the results with bounding boxes, masks, and IDs
|
| 236 |
+
annotated_frame = results[0].plot()
|
| 237 |
+
|
| 238 |
+
# Draw the angled line on the frame
|
| 239 |
+
draw_angled_line(annotated_frame, line_params, color=(0, 255, 0), thickness=2)
|
| 240 |
+
|
| 241 |
+
# Display the count on the frame with a modern look
|
| 242 |
+
count = len(crossed_objects)
|
| 243 |
+
(text_width, text_height), _ = cv2.getTextSize(f"COUNT: {count}", cv2.FONT_HERSHEY_SIMPLEX, 1, 2)
|
| 244 |
+
|
| 245 |
+
# Calculate the position for the middle of the top
|
| 246 |
+
margin = 10 # Margin from the top
|
| 247 |
+
x = (annotated_frame.shape[1] - text_width) // 2 # Center-align the text horizontally
|
| 248 |
+
y = text_height + margin # Top-align the text
|
| 249 |
+
|
| 250 |
+
# Draw the black background rectangle
|
| 251 |
+
cv2.rectangle(annotated_frame, (x - margin, y - text_height - margin), (x + text_width + margin, y + margin), (0, 0, 0), -1)
|
| 252 |
+
|
| 253 |
+
# Draw the text
|
| 254 |
+
cv2.putText(annotated_frame, f"COUNT: {count}", (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
| 255 |
+
|
| 256 |
+
# Yield the annotated frame to Gradio
|
| 257 |
+
yield annotated_frame, ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
cap.release()
|
| 260 |
logger.info("Stream processing completed.")
|