File size: 12,071 Bytes
f126604
d377221
f126604
7e095f4
ab172ce
60e4c3d
94662cd
 
dfff005
ab172ce
f0898a3
f126604
7757822
ab172ce
e3305a8
 
dfff005
ab172ce
 
f0898a3
ab172ce
 
dfff005
f0898a3
94662cd
f126604
 
 
ab172ce
 
f126604
 
f0898a3
5620229
 
 
 
 
60e4c3d
5620229
94662cd
 
 
 
 
 
 
 
ab172ce
 
 
 
94662cd
ab172ce
 
 
5620229
 
ab172ce
dfff005
 
 
f0898a3
6c1d81c
f0898a3
ab172ce
6c1d81c
dfff005
5620229
 
8dff938
 
 
94662cd
 
 
 
8dff938
 
 
 
 
 
 
 
 
 
 
 
60e4c3d
8dff938
 
 
 
 
 
 
 
60e4c3d
94662cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab172ce
 
 
 
 
dfff005
ab172ce
60e4c3d
f0898a3
 
 
 
94662cd
dfff005
ab172ce
 
f0898a3
94662cd
ab172ce
 
 
dfff005
 
 
 
94662cd
 
 
 
 
 
 
 
 
 
ab172ce
f0898a3
ab172ce
 
94662cd
ab172ce
 
94662cd
ab172ce
f0898a3
ab172ce
dfff005
 
94662cd
 
 
 
 
f0898a3
94662cd
60e4c3d
dfff005
60e4c3d
ab172ce
 
 
 
 
f126604
 
 
94662cd
ab172ce
dfff005
 
 
 
ab172ce
dfff005
ab172ce
 
 
dfff005
 
ab172ce
dfff005
 
ab172ce
 
f0898a3
 
 
94662cd
ab172ce
f0898a3
ab172ce
 
 
 
 
 
94662cd
 
ab172ce
bdcc052
e3305a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea3d9f9
ab172ce
 
ea3d9f9
ab172ce
ea3d9f9
ab172ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfff005
ea3d9f9
 
 
ab172ce
 
f126604
94662cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import os
import sys
import json
import logging
import re
from datetime import datetime
from typing import List, Dict, Optional, Tuple
from enum import Enum

from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import asyncio
from fastapi import Query
from bson import ObjectId
from txagent.txagent import TxAgent
from db.mongo import get_mongo_client

# Logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("TxAgentAPI")

# App
app = FastAPI(title="TxAgent API", version="2.2.0")  # Version bump for new features

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"], allow_credentials=True,
    allow_methods=["*"], allow_headers=["*"]
)

# Pydantic
class ChatRequest(BaseModel):
    message: str
    temperature: float = 0.7
    max_new_tokens: int = 512
    history: Optional[List[Dict]] = None
    format: Optional[str] = "clean"

# Enums
class RiskLevel(str, Enum):
    NONE = "none"
    LOW = "low"
    MODERATE = "moderate"
    HIGH = "high"
    SEVERE = "severe"

# Globals
agent = None
patients_collection = None
analysis_collection = None
alerts_collection = None

# Helpers
def clean_text_response(text: str) -> str:
    text = re.sub(r'\n\s*\n', '\n\n', text)
    text = re.sub(r'[ ]+', ' ', text)
    return text.replace("**", "").replace("__", "").strip()

def extract_section(text: str, heading: str) -> str:
    try:
        pattern = rf"{re.escape(heading)}:\s*\n(.*?)(?=\n[A-Z][^\n]*:|\Z)"
        match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
        return match.group(1).strip() if match else ""
    except Exception as e:
        logger.error(f"Section extraction failed for heading '{heading}': {e}")
        return ""

def structure_medical_response(text: str) -> Dict:
    """Improved version that handles both markdown and plain text formats"""
    def extract_improved(text: str, heading: str) -> str:
        patterns = [
            rf"{re.escape(heading)}:\s*\n(.*?)(?=\n\s*\n|\Z)",
            rf"\*\*{re.escape(heading)}\*\*:\s*\n(.*?)(?=\n\s*\n|\Z)",
            rf"{re.escape(heading)}[\s\-]+(.*?)(?=\n\s*\n|\Z)",
            rf"\n{re.escape(heading)}\s*\n(.*?)(?=\n\s*\n|\Z)"
        ]
        
        for pattern in patterns:
            match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
            if match:
                content = match.group(1).strip()
                content = re.sub(r'^\s*[\-\*]\s*', '', content, flags=re.MULTILINE)
                return content
        return ""

    text = text.replace('**', '').replace('__', '')
    
    return {
        "summary": extract_improved(text, "Summary of Patient's Medical History") or 
                  extract_improved(text, "Summarize the patient's medical history"),
        "risks": extract_improved(text, "Identify Risks or Red Flags") or 
                extract_improved(text, "Risks or Red Flags"),
        "missed_issues": extract_improved(text, "Missed Diagnoses or Treatments") or 
                       extract_improved(text, "What the doctor might have missed"),
        "recommendations": extract_improved(text, "Suggest Next Clinical Steps") or 
                         extract_improved(text, "Suggested Clinical Actions")
    }

def detect_suicide_risk(text: str) -> Tuple[RiskLevel, float, List[str]]:
    """Analyze text for suicide risk factors and return assessment"""
    suicide_keywords = [
        'suicide', 'suicidal', 'kill myself', 'end my life', 
        'want to die', 'self-harm', 'self harm', 'hopeless',
        'no reason to live', 'plan to die'
    ]
    
    # Check for explicit mentions
    explicit_mentions = [kw for kw in suicide_keywords if kw in text.lower()]
    
    if not explicit_mentions:
        return RiskLevel.NONE, 0.0, []
    
    # If found, ask AI for detailed assessment
    assessment_prompt = (
        "Assess the suicide risk level based on this text. "
        "Consider frequency, specificity, and severity of statements. "
        "Respond with JSON format: {\"risk_level\": \"low/moderate/high/severe\", "
        "\"risk_score\": 0-1, \"factors\": [\"list of risk factors\"]}\n\n"
        f"Text to assess:\n{text}"
    )
    
    try:
        response = agent.chat(
            message=assessment_prompt,
            history=[],
            temperature=0.2,  # Lower temp for more deterministic responses
            max_new_tokens=256
        )
        
        # Extract JSON from response
        json_match = re.search(r'\{.*\}', response, re.DOTALL)
        if json_match:
            assessment = json.loads(json_match.group())
            return (
                RiskLevel(assessment.get("risk_level", "none").lower()),
                float(assessment.get("risk_score", 0)),
                assessment.get("factors", [])
            )
    except Exception as e:
        logger.error(f"Error in suicide risk assessment: {e}")
    
    # Fallback if JSON parsing fails
    risk_score = min(0.1 * len(explicit_mentions), 0.9)  # Cap at 0.9 for fallback
    if risk_score > 0.7:
        return RiskLevel.HIGH, risk_score, explicit_mentions
    elif risk_score > 0.4:
        return RiskLevel.MODERATE, risk_score, explicit_mentions
    return RiskLevel.LOW, risk_score, explicit_mentions

async def create_alert(patient_id: str, risk_data: dict):
    """Create an alert document in the database"""
    alert_doc = {
        "patient_id": patient_id,
        "type": "suicide_risk",
        "level": risk_data["level"],
        "score": risk_data["score"],
        "factors": risk_data["factors"],
        "timestamp": datetime.utcnow(),
        "acknowledged": False
    }
    await alerts_collection.insert_one(alert_doc)
    logger.warning(f"⚠️ Created suicide risk alert for patient {patient_id}")

def serialize_patient(patient: dict) -> dict:
    patient_copy = patient.copy()
    if "_id" in patient_copy:
        patient_copy["_id"] = str(patient_copy["_id"])
    return patient_copy

async def analyze_patient(patient: dict):
    try:
        serialized = serialize_patient(patient)
        doc = json.dumps(serialized, indent=2)
        logger.info(f"🧾 Analyzing patient: {serialized.get('fhir_id')}")

        # Main clinical analysis
        message = (
            "You are a clinical decision support AI.\n\n"
            "Given the patient document below:\n"
            "1. Summarize the patient's medical history.\n"
            "2. Identify risks or red flags (including mental health and suicide risk).\n"
            "3. Highlight missed diagnoses or treatments.\n"
            "4. Suggest next clinical steps.\n"
            f"\nPatient Document:\n{'-'*40}\n{doc[:10000]}"
        )

        raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024)
        structured = structure_medical_response(raw)
        
        # Suicide risk assessment
        risk_level, risk_score, risk_factors = detect_suicide_risk(raw)
        suicide_risk = {
            "level": risk_level.value,
            "score": risk_score,
            "factors": risk_factors
        }
        
        # Store analysis
        analysis_doc = {
            "patient_id": serialized.get("fhir_id"),
            "timestamp": datetime.utcnow(),
            "summary": structured,
            "suicide_risk": suicide_risk,
            "raw": raw
        }
        
        await analysis_collection.update_one(
            {"patient_id": serialized.get("fhir_id")},
            {"$set": analysis_doc},
            upsert=True
        )
        
        # Create alert if risk is above threshold
        if risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]:
            await create_alert(serialized.get("fhir_id"), suicide_risk)
            
        logger.info(f"✅ Stored analysis for patient {serialized.get('fhir_id')}")

    except Exception as e:
        logger.error(f"Error analyzing patient: {e}")

async def analyze_all_patients():
    patients = await patients_collection.find({}).to_list(length=None)
    for patient in patients:
        await analyze_patient(patient)
        await asyncio.sleep(0.1)

@app.on_event("startup")
async def startup_event():
    global agent, patients_collection, analysis_collection, alerts_collection

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        enable_finish=True,
        enable_rag=False,
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=42
    )
    agent.chat_prompt = (
        "You are a clinical assistant AI. Analyze the patient's data and provide clear clinical recommendations."
    )
    agent.init_model()
    logger.info("✅ TxAgent initialized")

    db = get_mongo_client()["cps_db"]
    patients_collection = db["patients"]
    analysis_collection = db["patient_analysis_results"]
    alerts_collection = db["clinical_alerts"]  # New collection for alerts
    logger.info("📡 Connected to MongoDB")

    asyncio.create_task(analyze_all_patients())

@app.get("/status")
async def status():
    return {
        "status": "running",
        "timestamp": datetime.utcnow().isoformat(),
        "version": "2.2.0"
    }

@app.get("/patients/analysis-results")
async def get_patient_analysis_results(name: Optional[str] = Query(None)):
    try:
        query = {}

        # If a name filter is provided, we search the patients collection first
        if name:
            name_regex = re.compile(name, re.IGNORECASE)
            matching_patients = await patients_collection.find({"full_name": name_regex}).to_list(length=None)
            patient_ids = [p["fhir_id"] for p in matching_patients if "fhir_id" in p]
            if not patient_ids:
                return []
            query = {"patient_id": {"$in": patient_ids}}

        # Find analysis results based on patient_ids (or all if no filter)
        analyses = await analysis_collection.find(query).sort("timestamp", -1).to_list(length=100)

        # Attach full_name to each analysis result
        enriched_results = []
        for analysis in analyses:
            patient = await patients_collection.find_one({"fhir_id": analysis["patient_id"]})
            if patient:
                analysis["full_name"] = patient.get("full_name", "Unknown")
            analysis["_id"] = str(analysis["_id"])
            enriched_results.append(analysis)

        return enriched_results

    except Exception as e:
        logger.error(f"Error fetching analysis results: {e}")
        raise HTTPException(status_code=500, detail="Failed to retrieve analysis results")



@app.post("/chat-stream")
async def chat_stream_endpoint(request: ChatRequest):
    async def token_stream():
        try:
            conversation = [{"role": "system", "content": agent.chat_prompt}]
            if request.history:
                conversation.extend(request.history)
            conversation.append({"role": "user", "content": request.message})

            input_ids = agent.tokenizer.apply_chat_template(
                conversation, add_generation_prompt=True, return_tensors="pt"
            ).to(agent.device)

            output = agent.model.generate(
                input_ids,
                do_sample=True,
                temperature=request.temperature,
                max_new_tokens=request.max_new_tokens,
                pad_token_id=agent.tokenizer.eos_token_id,
                return_dict_in_generate=True
            )

            text = agent.tokenizer.decode(output["sequences"][0][input_ids.shape[1]:], skip_special_tokens=True)
            for chunk in text.split():
                yield chunk + " "
                await asyncio.sleep(0.05)
        except Exception as e:
            logger.error(f"Streaming error: {e}")
            yield f"⚠️ Error: {e}"

    return StreamingResponse(token_stream(), media_type="text/plain")