File size: 20,231 Bytes
f394b25
 
 
 
 
 
d88209d
e12aa83
f394b25
 
 
 
6b4b480
f394b25
 
 
 
a71a831
d88209d
 
 
 
f394b25
a71a831
f394b25
 
 
d88209d
 
dda4a06
5d37db7
dda4a06
5d37db7
dda4a06
d88209d
 
a71a831
 
 
 
 
 
 
 
 
 
 
 
d88209d
 
 
 
 
 
 
3cd3468
c10ba83
 
 
fcebf54
c10ba83
3cd3468
a71a831
 
 
d88209d
 
 
 
a71a831
 
 
 
d88209d
a71a831
d88209d
 
 
 
5d37db7
d88209d
 
5d37db7
dda4a06
5d37db7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d88209d
 
5d37db7
828effe
5d37db7
a71a831
5d37db7
a71a831
 
 
76162fc
5d37db7
a71a831
d88209d
5d37db7
d88209d
 
 
f394b25
5d37db7
 
d88209d
 
 
5d37db7
 
 
 
76162fc
5d37db7
 
 
 
d88209d
 
 
 
 
 
76162fc
 
 
 
5d37db7
a71a831
d88209d
5d37db7
a71a831
d88209d
76162fc
 
 
 
 
dda4a06
76162fc
dda4a06
76162fc
 
 
dda4a06
 
76162fc
dda4a06
 
 
 
 
76162fc
 
dda4a06
 
76162fc
 
dda4a06
 
 
76162fc
 
 
dda4a06
76162fc
 
 
 
 
 
 
 
 
 
 
 
d88209d
 
a71a831
d88209d
 
 
 
 
 
 
 
 
 
 
 
 
76162fc
 
 
d88209d
 
 
76162fc
 
d88209d
 
 
 
a71a831
d88209d
 
76162fc
d88209d
76162fc
 
a71a831
5d37db7
76162fc
 
d88209d
 
5d37db7
d88209d
76162fc
 
 
 
8a7f6db
76162fc
 
 
 
 
 
 
d88209d
76162fc
 
 
 
 
 
 
a71a831
76162fc
d88209d
76162fc
a71a831
76162fc
dda4a06
a71a831
 
d88209d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e27edaa
d88209d
 
 
 
 
 
 
 
 
 
 
8a7f6db
d88209d
a71a831
 
d88209d
a71a831
 
 
 
 
e12aa83
 
 
 
 
 
 
 
 
a71a831
e12aa83
a71a831
e12aa83
a71a831
e12aa83
d88209d
dda4a06
a71a831
 
 
 
d88209d
 
 
 
 
b1ea34e
dda4a06
d88209d
 
 
 
 
 
 
 
b1ea34e
76162fc
 
 
 
 
 
 
a71a831
76162fc
 
 
 
 
 
 
 
d88209d
 
76162fc
d88209d
76162fc
d88209d
b1ea34e
 
 
 
dda4a06
76162fc
 
 
 
 
 
 
dda4a06
76162fc
 
 
 
 
 
 
 
 
 
d88209d
 
76162fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d88209d
76162fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dda4a06
76162fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cf6d2e
a71a831
76162fc
 
 
 
d88209d
 
 
 
 
 
 
 
 
 
 
 
a71a831
55e3db0
f394b25
 
dda4a06
e12aa83
 
dda4a06
f394b25
 
dda4a06
f394b25
d88209d
 
dda4a06
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Dict, Optional, Generator
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
import time
from transformers import AutoTokenizer
from functools import lru_cache
import numpy as np
from difflib import SequenceMatcher

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
MAX_TOKENS = 1800
BATCH_SIZE = 1
MAX_WORKERS = 2
CHUNK_SIZE = 5
MODEL_MAX_TOKENS = 131072
MAX_TEXT_LENGTH = 500000

# Persistent directory setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ.update({
    "HF_HOME": model_cache_dir,
    "TRANSFORMERS_CACHE": model_cache_dir,
    "VLLM_CACHE_DIR": vllm_cache_dir,
    "TOKENIZERS_PARALLELISM": "false",
    "CUDA_LAUNCH_BLOCKING": "1"
})

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Initialize cache with 10GB limit
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)

@lru_cache(maxsize=1)
def get_tokenizer():
    return AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    hash_md5 = hashlib.md5()
    with open(path, "rb") as f:
        for chunk in iter(lambda: f.read(4096), b""):
            hash_md5.update(chunk)
    return hash_md5.hexdigest()

def extract_pdf_page(page, tokenizer, max_tokens=MAX_TOKENS) -> List[str]:
    try:
        text = page.extract_text() or ""
        text = sanitize_utf8(text)
        if len(text) > MAX_TEXT_LENGTH // 10:
            text = text[:MAX_TEXT_LENGTH // 10]
        
        tokens = tokenizer.encode(text, add_special_tokens=False)
        if len(tokens) > max_tokens:
            chunks = []
            current_chunk = []
            current_length = 0
            for token in tokens:
                if current_length + 1 > max_tokens:
                    chunks.append(tokenizer.decode(current_chunk))
                    current_chunk = [token]
                    current_length = 1
                else:
                    current_chunk.append(token)
                    current_length += 1
            if current_chunk:
                chunks.append(tokenizer.decode(current_chunk))
            return [f"=== Page {page.page_number} ===\n{c}" for c in chunks]
        return [f"=== Page {page.page_number} ===\n{text}"]
    except Exception as e:
        logger.warning(f"Error extracting page {page.page_number}: {str(e)}")
        return []

def extract_all_pages(file_path: str, progress_callback=None) -> List[str]:
    try:
        tokenizer = get_tokenizer()
        with pdfplumber.open(file_path) as pdf:
            total_pages = len(pdf.pages)
            if total_pages == 0:
                logger.error("PDF has 0 pages - may be corrupted or empty")
                return []

        results = []
        total_tokens = 0
        for chunk_start in range(0, total_pages, CHUNK_SIZE):
            chunk_end = min(chunk_start + CHUNK_SIZE, total_pages)
            
            with pdfplumber.open(file_path) as pdf:
                with ThreadPoolExecutor(max_workers=min(CHUNK_SIZE, 2)) as executor:
                    futures = [executor.submit(extract_pdf_page, pdf.pages[i], tokenizer) 
                             for i in range(chunk_start, chunk_end)]
                    
                    for future in as_completed(futures):
                        page_chunks = future.result()
                        for chunk in page_chunks:
                            chunk_tokens = len(tokenizer.encode(chunk, add_special_tokens=False))
                            if total_tokens + chunk_tokens > MODEL_MAX_TOKENS:
                                logger.warning("Total tokens exceed model limit. Stopping.")
                                return results
                            results.append(chunk)
                            total_tokens += chunk_tokens
                    
                    if progress_callback:
                        progress_callback(min(chunk_end, total_pages), total_pages)
            
            del pdf
            gc.collect()
        
        if not results:
            logger.error("No content extracted from PDF - may be scanned or encrypted")
            return ["PDF appears to be empty or unreadable"]
        
        return results
    except Exception as e:
        logger.error(f"PDF processing error: {e}")
        return [f"PDF processing error: {str(e)}"]

def excel_to_json(file_path: str) -> List[Dict]:
    """Enhanced Excel processing with multiple engine support"""
    engines = ['openpyxl', 'xlrd', 'odf']
    last_error = None
    
    for engine in engines:
        try:
            with pd.ExcelFile(file_path, engine=engine) as excel_file:
                sheets = excel_file.sheet_names
                if not sheets:
                    return [{"error": "No sheets found in Excel file"}]
                
                results = []
                for sheet_name in sheets:
                    try:
                        df = pd.read_excel(
                            excel_file,
                            sheet_name=sheet_name,
                            header=None,
                            dtype=str,
                            na_filter=False,
                            engine=engine
                        )
                        if not df.empty:
                            # Convert all cells to string and clean
                            df = df.applymap(lambda x: str(x).strip() if pd.notna(x) else "")
                            results.append({
                                "filename": f"{os.path.basename(file_path)} - {sheet_name}",
                                "rows": df.values.tolist(),
                                "type": "excel",
                                "sheet": sheet_name,
                                "dimensions": f"{len(df)} rows x {len(df.columns)} cols"
                            })
                    except Exception as sheet_error:
                        logger.warning(f"Error processing sheet {sheet_name}: {sheet_error}")
                        continue
                
                if results:
                    logger.info(f"Successfully processed Excel file with {engine} engine")
                    return results
        except Exception as engine_error:
            last_error = engine_error
            continue
    
    return [{"error": f"Failed to process Excel file with all engines. Last error: {str(last_error)}"}]

def csv_to_json(file_path: str) -> List[Dict]:
    try:
        chunks = []
        for chunk in pd.read_csv(
            file_path,
            header=None,
            dtype=str,
            encoding_errors='replace',
            on_bad_lines='skip',
            chunksize=10000,
            na_filter=False
        ):
            chunks.append(chunk)
        
        df = pd.concat(chunks) if chunks else pd.DataFrame()
        if df.empty:
            return [{"error": "CSV file is empty or could not be read"}]
            
        return [{
            "filename": os.path.basename(file_path),
            "rows": df.values.tolist(),
            "type": "csv",
            "dimensions": f"{len(df)} rows x {len(df.columns)} cols"
        }]
    except Exception as e:
        logger.error(f"CSV processing error: {e}")
        return [{"error": f"CSV processing error: {str(e)}"}]

@lru_cache(maxsize=100)
def process_file_cached(file_path: str, file_type: str) -> List[Dict]:
    """Enhanced file processing with detailed logging"""
    try:
        logger.info(f"Processing file: {file_path} (type: {file_type})")
        
        if file_type == "pdf":
            chunks = extract_all_pages(file_path)
            if not chunks or (len(chunks) == 1 and "error" in chunks[0]):
                return [{"error": chunks[0] if chunks else "PDF appears to be empty"}]
            return [{
                "filename": os.path.basename(file_path),
                "content": chunk,
                "status": "initial",
                "type": "pdf",
                "page": i+1
            } for i, chunk in enumerate(chunks)]
            
        elif file_type in ["xls", "xlsx"]:
            result = excel_to_json(file_path)
            if "error" in result[0]:
                logger.error(f"Excel processing failed: {result[0]['error']}")
            else:
                logger.info(f"Excel processing successful - found {len(result)} sheets")
            return result
            
        elif file_type == "csv":
            result = csv_to_json(file_path)
            if "error" in result[0]:
                logger.error(f"CSV processing failed: {result[0]['error']}")
            else:
                logger.info(f"CSV processing successful - found {len(result[0]['rows'])} rows")
            return result
            
        else:
            logger.warning(f"Unsupported file type: {file_type}")
            return [{"error": f"Unsupported file type: {file_type}"}]
            
    except Exception as e:
        logger.error(f"Error processing {file_path}: {str(e)}", exc_info=True)
        return [{"error": f"Error processing file: {str(e)}"}]

def clean_response(text: str) -> str:
    if not text:
        return ""
    
    patterns = [
        (re.compile(r"\[.*?\]|\bNone\b", re.IGNORECASE), ""),
        (re.compile(r"\s+"), " "),
        (re.compile(r"[^\w\s\.\,\(\)\-]"), ""),
    ]
    
    for pattern, repl in patterns:
        text = pattern.sub(repl, text)
    
    sentences = text.split(". ")
    unique_sentences = []
    seen = set()
    
    for s in sentences:
        if not s:
            continue
        is_unique = True
        for seen_s in seen:
            if SequenceMatcher(None, s.lower(), seen_s.lower()).ratio() > 0.9:
                is_unique = False
                break
        if is_unique:
            unique_sentences.append(s)
            seen.add(s)
    
    text = ". ".join(unique_sentences).strip()
    return text if text else "No missed diagnoses identified."

@lru_cache(maxsize=1)
def init_agent():
    logger.info("Initializing model...")
    
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=False,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    logger.info("Agent Ready")
    return agent

def create_ui(agent):
    PROMPT_TEMPLATE = """
Analyze the patient record excerpt for missed diagnoses. Provide detailed, evidence-based analysis.
Patient Record Excerpt (Chunk {0} of {1}):
{chunk}
"""

    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        
        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(label="Analysis Summary", height=600, value=[])
                msg_input = gr.Textbox(placeholder="Ask about potential oversights...")
                send_btn = gr.Button("Analyze", variant="primary")
                file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
            
            with gr.Column(scale=1):
                final_summary = gr.Markdown(label="Missed Diagnoses Summary")
                download_output = gr.File(label="Download Detailed Report")
                progress_bar = gr.Progress()

        def analyze(message: str, history: List[List[str]], files: List, progress=gr.Progress()):
            """Enhanced analysis with detailed file processing feedback"""
            try:
                if history is None:
                    history = []
                
                history.append([message, None])
                yield history, None, ""

                if not files:
                    history[-1][1] = "❌ Please upload a file to analyze"
                    yield history, None, "No files uploaded"
                    return

                extracted = []
                file_hash_value = ""
                
                for f in files:
                    file_type = f.name.split(".")[-1].lower()
                    logger.info(f"Processing file: {f.name} (type: {file_type})")
                    
                    cache_key = f"{file_hash(f.name)}_{file_type}"
                    if cache_key in cache:
                        cached_data = cache[cache_key]
                        if isinstance(cached_data, list) and len(cached_data) > 0:
                            extracted.extend(cached_data)
                            history[-1][1] = f"βœ… Using cached data for {os.path.basename(f.name)}"
                            yield history, None, ""
                            continue
                    
                    try:
                        result = process_file_cached(f.name, file_type)
                        if "error" in result[0]:
                            history[-1][1] = f"❌ Error processing {os.path.basename(f.name)}: {result[0]['error']}"
                            yield history, None, result[0]['error']
                            return
                        
                        cache[cache_key] = result
                        extracted.extend(result)
                        history[-1][1] = f"βœ… Processed {os.path.basename(f.name)}"
                        yield history, None, ""
                    except Exception as e:
                        logger.error(f"File processing error: {e}", exc_info=True)
                        history[-1][1] = f"❌ Critical error processing {os.path.basename(f.name)}"
                        yield history, None, str(e)
                        return
                
                file_hash_value = file_hash(files[0].name) if files else ""
                
                # Debug extracted content
                logger.info(f"Extracted content summary:")
                for item in extracted:
                    if "content" in item:
                        logger.info(f"- {item['filename']}: {len(item['content'])} chars")
                    elif "rows" in item:
                        logger.info(f"- {item['filename']}: {len(item['rows'])} rows")
                
                if not extracted:
                    history[-1][1] = "❌ No valid content extracted from files"
                    yield history, None, "No valid content extracted"
                    return

                chunks = []
                for item in extracted:
                    if "content" in item:
                        chunks.append(item["content"])
                    elif "rows" in item:
                        # Convert Excel/CSV rows to text
                        rows_text = "\n".join([", ".join(map(str, row)) for row in item["rows"]])
                        chunks.append(f"=== {item['filename']} ===\n{rows_text}")
                
                if not chunks:
                    history[-1][1] = "❌ No processable content found in files"
                    yield history, None, "No processable content found"
                    return

                combined_response = ""
                report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
                
                try:
                    for batch_idx in range(0, len(chunks), BATCH_SIZE):
                        batch_chunks = chunks[batch_idx:batch_idx + BATCH_SIZE]
                        
                        progress(batch_idx / len(chunks), 
                               desc=f"Processing batch {(batch_idx // BATCH_SIZE) + 1}/{(len(chunks) + BATCH_SIZE - 1) // BATCH_SIZE}")
                        
                        with ThreadPoolExecutor(max_workers=min(BATCH_SIZE, MAX_WORKERS)) as executor:
                            futures = {
                                executor.submit(
                                    agent.run_quick_summary,
                                    chunk, 0.2, 256, 1024
                                ): idx
                                for idx, chunk in enumerate(batch_chunks)
                            }
                            
                            for future in as_completed(futures):
                                chunk_idx = futures[future]
                                try:
                                    response = clean_response(future.result())
                                    if response:
                                        combined_response += f"\n--- Analysis for Chunk {batch_idx + chunk_idx + 1} ---\n{response}\n"
                                        history[-1][1] = combined_response.strip()
                                        yield history, None, ""
                                except Exception as e:
                                    logger.error(f"Chunk processing error: {e}")
                                    history[-1][1] = f"Error processing chunk: {str(e)}"
                                    yield history, None, ""
                                finally:
                                    del future
                                    torch.cuda.empty_cache()
                                    gc.collect()

                    summary = "Analysis complete. " + ("Download full report below." if report_path and os.path.exists(report_path) else "")
                    history.append(["Analysis completed", None])
                    history[-1][1] = summary
                    yield history, report_path, summary

                except Exception as e:
                    logger.error(f"Analysis error: {e}")
                    history.append(["Analysis failed", None])
                    history[-1][1] = f"❌ Error occurred: {str(e)}"
                    yield history, None, f"Error occurred: {str(e)}"
                finally:
                    torch.cuda.empty_cache()
                    gc.collect()

            except Exception as e:
                logger.error(f"Unexpected error in analysis: {e}")
                history.append(["System error", None])
                history[-1][1] = f"❌ System error occurred: {str(e)}"
                yield history, None, f"System error: {str(e)}"

        send_btn.click(
            analyze, 
            inputs=[msg_input, gr.State([]), file_upload], 
            outputs=[chatbot, download_output, final_summary]
        )
        msg_input.submit(
            analyze, 
            inputs=[msg_input, gr.State([]), file_upload], 
            outputs=[chatbot, download_output, final_summary]
        )
    
    return demo

if __name__ == "__main__":
    try:
        logger.info("Launching app...")
        agent = init_agent()
        demo = create_ui(agent)
        demo.queue().launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True
        )
    except Exception as e:
        logger.error(f"Fatal error: {e}")
        raise