File size: 18,161 Bytes
463c8b4
a6968c2
c9b3ae0
a6968c2
463c8b4
973658c
463c8b4
 
a6968c2
463c8b4
 
 
 
cbd84d4
 
c278ebf
90e24e0
463c8b4
c9b3ae0
a6968c2
463c8b4
 
 
a6968c2
 
463c8b4
 
 
a6968c2
 
463c8b4
 
 
 
 
 
 
 
 
 
 
 
a6968c2
41eb6bd
a6968c2
 
41eb6bd
 
a6968c2
cbd84d4
 
a6968c2
 
90e24e0
cbd84d4
463c8b4
cbd84d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c278ebf
cbd84d4
c278ebf
cbd84d4
 
463c8b4
 
90e24e0
463c8b4
a6968c2
 
463c8b4
a6968c2
41eb6bd
 
c9b3ae0
41eb6bd
cbd84d4
463c8b4
c9b3ae0
 
463c8b4
 
 
c9b3ae0
463c8b4
 
 
 
 
 
41eb6bd
463c8b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3683afe
463c8b4
51aebc3
463c8b4
bfa497f
 
 
 
 
3800ddf
51aebc3
 
 
 
 
 
 
 
 
 
 
3800ddf
51aebc3
3800ddf
 
 
 
 
51aebc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3800ddf
51aebc3
bfa497f
51aebc3
 
 
3800ddf
 
 
 
463c8b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41eb6bd
 
 
c9b3ae0
41eb6bd
 
463c8b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51aebc3
463c8b4
 
 
51aebc3
bfa497f
 
51aebc3
 
 
bfa497f
 
 
 
 
 
463c8b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51aebc3
3800ddf
463c8b4
 
 
 
 
 
 
 
51aebc3
3800ddf
463c8b4
 
 
 
 
 
 
 
bfa497f
 
 
3800ddf
463c8b4
 
3800ddf
463c8b4
 
3800ddf
463c8b4
 
 
 
 
 
 
 
 
 
 
 
41eb6bd
 
 
a6968c2
fe67870
e24be23
818eb65
463c8b4
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import multiprocessing
from functools import partial
import time

# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_page_range(file_path: str, start_page: int, end_page: int) -> str:
    """Extract text from a range of PDF pages."""
    try:
        text_chunks = []
        with pdfplumber.open(file_path) as pdf:
            for page in pdf.pages[start_page:end_page]:
                page_text = page.extract_text() or ""
                text_chunks.append(f"=== Page {start_page + pdf.pages.index(page) + 1} ===\n{page_text.strip()}")
        return "\n\n".join(text_chunks)
    except Exception:
        return ""

def extract_all_pages(file_path: str, progress_callback=None) -> str:
    """Extract text from all pages of a PDF using parallel processing."""
    try:
        with pdfplumber.open(file_path) as pdf:
            total_pages = len(pdf.pages)
        
        if total_pages == 0:
            return ""
        
        # Use 6 processes (adjust based on CPU cores)
        num_processes = min(6, multiprocessing.cpu_count())
        pages_per_process = max(1, total_pages // num_processes)
        
        # Create page ranges for parallel processing
        ranges = [(i * pages_per_process, min((i + 1) * pages_per_process, total_pages))
                  for i in range(num_processes)]
        if ranges[-1][1] != total_pages:
            ranges[-1] = (ranges[-1][0], total_pages)
        
        # Process page ranges in parallel
        with multiprocessing.Pool(processes=num_processes) as pool:
            extract_func = partial(extract_page_range, file_path)
            results = []
            for idx, result in enumerate(pool.starmap(extract_func, ranges)):
                results.append(result)
                if progress_callback:
                    processed_pages = min((idx + 1) * pages_per_process, total_pages)
                    progress_callback(processed_pages, total_pages)
        
        return "\n\n".join(filter(None, results))
    except Exception as e:
        return f"PDF processing error: {str(e)}"

def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str:
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")
        if os.path.exists(cache_path):
            with open(cache_path, "r", encoding="utf-8") as f:
                return f.read()

        if file_type == "pdf":
            text = extract_all_pages(file_path, progress_callback)
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
        elif file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
                             skip_blank_lines=False, on_bad_lines="skip")
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except Exception:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        else:
            result = json.dumps({"error": f"Unsupported file type: {file_type}"})
        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        return result
    except Exception as e:
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def log_system_usage(tag=""):
    try:
        cpu = psutil.cpu_percent(interval=1)
        mem = psutil.virtual_memory()
        print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
            capture_output=True, text=True
        )
        if result.returncode == 0:
            used, total, util = result.stdout.strip().split(", ")
            print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
    except Exception as e:
        print(f"[{tag}] GPU/CPU monitor failed: {e}")

def clean_response(text: str) -> str:
    """Clean TxAgent response to group findings under tool-derived headings."""
    text = sanitize_utf8(text)
    # Remove tool call artifacts, None, and reasoning
    text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
    # Remove extra whitespace and non-markdown content
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.\,\:\(\)]+", "", text)  # Keep markdown-relevant characters
    
    # Define tool-to-heading mapping
    tool_to_heading = {
        "get_abuse_info_by_drug_name": "Drugs",
        "get_dependence_info_by_drug_name": "Drugs",
        "get_abuse_types_and_related_adverse_reactions_and_controlled_substance_status_by_drug_name": "Drugs",
        "get_info_for_patients_by_drug_name": "Drugs",
        # Add other tools from new_tool.json if applicable
    }
    
    # Parse sections and findings
    sections = {}
    current_section = None
    current_tool = None
    lines = text.splitlines()
    for line in lines:
        line = line.strip()
        if not line:
            continue
        # Detect tool tag
        tool_match = re.match(r"\[TOOL:\s*(\w+)\]", line)
        if tool_match:
            current_tool = tool_match.group(1)
            continue
        # Detect section heading
        section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
        if section_match:
            current_section = section_match.group(1)
            if current_section not in sections:
                sections[current_section] = []
            continue
        # Detect finding
        finding_match = re.match(r"-\s*.+", line)
        if finding_match and current_section and not re.match(r"-\s*No issues identified", line):
            # Assign to tool-derived heading if tool is specified
            if current_tool and current_tool in tool_to_heading:
                heading = tool_to_heading[current_tool]
                if heading not in sections:
                    sections[heading] = []
                sections[heading].append(line)
            else:
                sections[current_section].append(line)
    
    # Combine non-empty sections
    cleaned = []
    for heading, findings in sections.items():
        if findings:  # Only include sections with findings
            cleaned.append(f"### {heading}\n" + "\n".join(findings))
    
    text = "\n\n".join(cleaned).strip()
    if not text:
        text = ""  # Return empty string if no valid findings
    return text

def init_agent():
    print("πŸ” Initializing model...")
    log_system_usage("Before Load")
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    log_system_usage("After Load")
    print("βœ… Agent Ready")
    return agent

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
        file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
        msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
        send_btn = gr.Button("Analyze", variant="primary")
        download_output = gr.File(label="Download Full Report")

        def analyze(message: str, history: List[dict], files: List):
            history.append({"role": "user", "content": message})
            history.append({"role": "assistant", "content": "⏳ Extracting text from files..."})
            yield history, None

            extracted = ""
            file_hash_value = ""
            if files:
                # Progress callback for extraction
                total_pages = 0
                processed_pages = 0
                def update_extraction_progress(current, total):
                    nonlocal processed_pages, total_pages
                    processed_pages = current
                    total_pages = total
                    animation = ["πŸŒ€", "πŸ”„", "βš™οΈ", "πŸ”ƒ"][(int(time.time() * 2) % 4)]
                    history[-1] = {"role": "assistant", "content": f"Extracting text... {animation} Page {processed_pages}/{total_pages}"}
                    return history, None

                with ThreadPoolExecutor(max_workers=6) as executor:
                    futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower(), update_extraction_progress) for f in files]
                    results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
                    extracted = "\n".join(results)
                    file_hash_value = file_hash(files[0].name) if files else ""

            history.pop()  # Remove extraction message
            history.append({"role": "assistant", "content": "βœ… Text extraction complete."})
            yield history, None

            # Split extracted text into chunks of ~6,000 characters
            chunk_size = 6000
            chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
            combined_response = ""

            prompt_template = """
You are a medical analysis assistant. Analyze the following patient record excerpt for clinical oversights and provide a concise, evidence-based summary in markdown format. Group findings under appropriate headings based on the tool used (e.g., drug-related findings under 'Drugs'). For each finding, include:
- Clinical context (why the issue was missed or relevant details from the record).
- Potential risks if unaddressed (e.g., disease progression, adverse events).
- Actionable recommendations (e.g., tests, referrals, medication adjustments).
Output ONLY the markdown-formatted findings, with bullet points under each heading. Precede each finding with a tool tag (e.g., [TOOL: get_abuse_info_by_drug_name]) to indicate the tool used. Do NOT include reasoning, tool calls, or intermediate steps. If no issues are found for a tool or category, state "No issues identified" for that section. Ensure the output is specific to the provided text and avoids generic responses.

Example Output:
### Drugs
[TOOL: get_abuse_info_by_drug_name]
- Opioid use disorder not addressed. Missed due to lack of screening. Risks: overdose. Recommend: addiction specialist referral.
### Missed Diagnoses
- Elevated BP noted without diagnosis. Missed due to inconsistent visits. Risks: stroke. Recommend: BP monitoring, antihypertensives.
### Incomplete Assessments
- Chest pain not evaluated. Time constraints likely cause. Risks: cardiac issues. Recommend: ECG, stress test.
### Urgent Follow-up
- Abnormal creatinine not addressed. Delayed lab review. Risks: renal failure. Recommend: nephrology referral.

Patient Record Excerpt (Chunk {0} of {1}):
{chunk}
"""

            try:
                # Process each chunk and stream results in real-time
                for chunk_idx, chunk in enumerate(chunks, 1):
                    # Update UI with chunk progress
                    animation = ["πŸ”", "πŸ“Š", "🧠", "πŸ”Ž"][(int(time.time() * 2) % 4)]
                    history.append({"role": "assistant", "content": f"Analyzing records... {animation} Chunk {chunk_idx}/{len(chunks)}"})
                    yield history, None

                    prompt = prompt_template.format(chunk_idx, len(chunks), chunk=chunk[:4000])  # Truncate to avoid token limits
                    chunk_response = ""
                    for chunk_output in agent.run_gradio_chat(
                        message=prompt,
                        history=[],
                        temperature=0.2,
                        max_new_tokens=1024,
                        max_token=4096,
                        call_agent=False,
                        conversation=[],
                    ):
                        if chunk_output is None:
                            continue
                        if isinstance(chunk_output, list):
                            for m in chunk_output:
                                if hasattr(m, 'content') and m.content:
                                    cleaned = clean_response(m.content)
                                    if cleaned and re.search(r"###\s*\w+", cleaned):
                                        chunk_response += cleaned + "\n\n"
                                        # Update UI with partial response
                                        if history[-1]["content"].startswith("Analyzing"):
                                            history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
                                        else:
                                            history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
                                        yield history, None
                        elif isinstance(chunk_output, str) and chunk_output.strip():
                            cleaned = clean_response(chunk_output)
                            if cleaned and re.search(r"###\s*\w+", cleaned):
                                chunk_response += cleaned + "\n\n"
                                # Update UI with partial response
                                if history[-1]["content"].startswith("Analyzing"):
                                    history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
                                else:
                                    history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
                                yield history, None

                    # Append completed chunk response to combined response
                    if chunk_response:
                        combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
                    else:
                        combined_response += f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n"

                # Finalize UI with complete response
                if combined_response.strip() and not all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
                    history[-1]["content"] = combined_response.strip()
                else:
                    history.append({"role": "assistant", "content": "No oversights identified in the provided records."})

                # Generate report file
                report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
                if report_path:
                    with open(report_path, "w", encoding="utf-8") as f:
                        f.write(combined_response)
                yield history, report_path if report_path and os.path.exists(report_path) else None

            except Exception as e:
                print("🚨 ERROR:", e)
                history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
                yield history, None

        send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
        msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
    return demo

if __name__ == "__main__":
    print("πŸš€ Launching app...")
    agent = init_agent()
    demo = create_ui(agent)
    demo.queue(api_open=False).launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        allowed_paths=[report_dir],
        share=False
    )