Ali2206 commited on
Commit
818eb65
Β·
verified Β·
1 Parent(s): 7524766

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -82
app.py CHANGED
@@ -11,11 +11,6 @@ import shutil
11
  import re
12
  import psutil
13
  import subprocess
14
- import logging
15
-
16
- # Configure logging
17
- logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
18
- logger = logging.getLogger(__name__)
19
 
20
  # Persistent directory
21
  persistent_dir = "/data/hf_cache"
@@ -65,16 +60,13 @@ def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
65
  text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
66
  return "\n\n".join(text_chunks)
67
  except Exception as e:
68
- logger.error(f"PDF processing error for {file_path}: {e}")
69
  return f"PDF processing error: {str(e)}"
70
 
71
  def convert_file_to_json(file_path: str, file_type: str) -> str:
72
- logger.debug(f"Converting file {file_path} (type: {file_type})")
73
  try:
74
  h = file_hash(file_path)
75
  cache_path = os.path.join(file_cache_dir, f"{h}.json")
76
  if os.path.exists(cache_path):
77
- logger.debug(f"Using cached JSON for {file_path}")
78
  with open(cache_path, "r", encoding="utf-8") as f:
79
  return f.read()
80
 
@@ -97,54 +89,47 @@ def convert_file_to_json(file_path: str, file_type: str) -> str:
97
  result = json.dumps({"error": f"Unsupported file type: {file_type}"})
98
  with open(cache_path, "w", encoding="utf-8") as f:
99
  f.write(result)
100
- logger.debug(f"Cached JSON for {file_path}")
101
  return result
102
  except Exception as e:
103
- logger.error(f"Error processing {file_path}: {e}")
104
  return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
105
 
106
  def log_system_usage(tag=""):
107
  try:
108
  cpu = psutil.cpu_percent(interval=1)
109
  mem = psutil.virtual_memory()
110
- logger.info(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
111
  result = subprocess.run(
112
  ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
113
  capture_output=True, text=True
114
  )
115
  if result.returncode == 0:
116
  used, total, util = result.stdout.strip().split(", ")
117
- logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
118
  except Exception as e:
119
- logger.warning(f"[{tag}] GPU/CPU monitor failed: {e}")
120
 
121
  def init_agent():
122
- logger.info("πŸ” Initializing model...")
123
  log_system_usage("Before Load")
124
  default_tool_path = os.path.abspath("data/new_tool.json")
125
  target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
126
  if not os.path.exists(target_tool_path):
127
- logger.debug(f"Copying tool file from {default_tool_path} to {target_tool_path}")
128
  shutil.copy(default_tool_path, target_tool_path)
129
 
130
- try:
131
- agent = TxAgent(
132
- model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
133
- rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
134
- tool_files_dict={"new_tool": target_tool_path},
135
- force_finish=True,
136
- enable_checker=True,
137
- step_rag_num=8,
138
- seed=100,
139
- additional_default_tools=[],
140
- )
141
- agent.init_model()
142
- log_system_usage("After Load")
143
- logger.info("βœ… Agent Ready")
144
- return agent
145
- except Exception as e:
146
- logger.error(f"Failed to initialize agent: {e}", exc_info=True)
147
- raise
148
 
149
  def create_ui(agent):
150
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
@@ -156,34 +141,19 @@ def create_ui(agent):
156
  download_output = gr.File(label="Download Full Report")
157
 
158
  def analyze(message: str, history: List[dict], files: List):
159
- logger.debug(f"Analyze called with message: {message[:100]}, history length: {len(history)}, files: {len(files)}")
160
-
161
- # Initialize history if empty
162
- if not history:
163
- history = []
164
-
165
  # Append user message
166
  history.append({"role": "user", "content": message})
167
  history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
168
  yield history, None
169
- logger.debug("Yielded initial history with analyzing message")
170
 
171
  extracted = ""
172
  file_hash_value = ""
173
  if files:
174
- logger.debug(f"Processing {len(files)} files")
175
- try:
176
- with ThreadPoolExecutor(max_workers=4) as executor:
177
- futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
178
- results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
179
- extracted = "\n".join(results)
180
- file_hash_value = file_hash(files[0].name) if files else ""
181
- logger.debug(f"Extracted file content: {extracted[:100]}")
182
- except Exception as e:
183
- logger.error(f"File processing failed: {e}")
184
- history.append({"role": "assistant", "content": f"❌ File processing error: {str(e)}"})
185
- yield history, None
186
- return
187
 
188
  prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
189
  1. List potential missed diagnoses
@@ -194,54 +164,44 @@ Medical Records:
194
  {extracted[:12000]}
195
  ### Potential Oversights:
196
  """
197
- logger.debug(f"Constructed prompt: {prompt[:100]}")
198
 
199
  try:
200
  # Remove the temporary "Analyzing..." message
201
  if history and history[-1]["content"].startswith("⏳"):
202
  history.pop()
203
- logger.debug("Removed analyzing message")
204
 
205
  # Process agent response
206
  for chunk in agent.run_gradio_chat(
207
  message=prompt,
208
- history=history,
209
  temperature=0.2,
210
  max_new_tokens=2048,
211
  max_token=4096,
212
  call_agent=False,
213
  conversation=[],
214
  ):
215
- logger.debug(f"Received chunk: {chunk}")
216
  if chunk is None:
217
- logger.warning("Chunk is None, skipping")
218
  continue
219
 
220
- # Handle chunk as a list of ChatMessage objects
221
  if isinstance(chunk, list):
222
  for m in chunk:
223
  if hasattr(m, 'content') and m.content:
224
  history.append({"role": m.role, "content": sanitize_utf8(m.content)})
225
- logger.debug(f"Appended message: {m.content[:50]}")
226
  yield history, None
227
- # Handle chunk as a string
228
  elif isinstance(chunk, str) and chunk.strip():
 
229
  if history and history[-1]["role"] == "assistant":
230
- history[-1]["content"] += "\n" + sanitize_utf8(chunk)
231
  else:
232
  history.append({"role": "assistant", "content": sanitize_utf8(chunk)})
233
- logger.debug(f"Updated history with string chunk: {chunk[:50]}")
234
  yield history, None
235
- else:
236
- logger.warning(f"Unexpected chunk type: {type(chunk)}")
237
 
238
  # Provide report path if available
239
  report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
240
- logger.debug(f"Report path: {report_path}")
241
  yield history, report_path if report_path and os.path.exists(report_path) else None
242
 
243
  except Exception as e:
244
- logger.error(f"Error in analyze: {e}", exc_info=True)
245
  history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
246
  yield history, None
247
 
@@ -250,18 +210,13 @@ Medical Records:
250
  return demo
251
 
252
  if __name__ == "__main__":
253
- logger.info("πŸš€ Launching app...")
254
- try:
255
- agent = init_agent()
256
- demo = create_ui(agent)
257
- demo.queue(api_open=False).launch(
258
- server_name="0.0.0.0",
259
- server_port=7860,
260
- show_error=True,
261
- allowed_paths=[report_dir],
262
- share=False,
263
- debug=True # Enable debug mode for better error reporting
264
- )
265
- except Exception as e:
266
- logger.error(f"Failed to launch app: {e}", exc_info=True)
267
- raise
 
11
  import re
12
  import psutil
13
  import subprocess
 
 
 
 
 
14
 
15
  # Persistent directory
16
  persistent_dir = "/data/hf_cache"
 
60
  text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
61
  return "\n\n".join(text_chunks)
62
  except Exception as e:
 
63
  return f"PDF processing error: {str(e)}"
64
 
65
  def convert_file_to_json(file_path: str, file_type: str) -> str:
 
66
  try:
67
  h = file_hash(file_path)
68
  cache_path = os.path.join(file_cache_dir, f"{h}.json")
69
  if os.path.exists(cache_path):
 
70
  with open(cache_path, "r", encoding="utf-8") as f:
71
  return f.read()
72
 
 
89
  result = json.dumps({"error": f"Unsupported file type: {file_type}"})
90
  with open(cache_path, "w", encoding="utf-8") as f:
91
  f.write(result)
 
92
  return result
93
  except Exception as e:
 
94
  return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
95
 
96
  def log_system_usage(tag=""):
97
  try:
98
  cpu = psutil.cpu_percent(interval=1)
99
  mem = psutil.virtual_memory()
100
+ print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
101
  result = subprocess.run(
102
  ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
103
  capture_output=True, text=True
104
  )
105
  if result.returncode == 0:
106
  used, total, util = result.stdout.strip().split(", ")
107
+ print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
108
  except Exception as e:
109
+ print(f"[{tag}] GPU/CPU monitor failed: {e}")
110
 
111
  def init_agent():
112
+ print("πŸ” Initializing model...")
113
  log_system_usage("Before Load")
114
  default_tool_path = os.path.abspath("data/new_tool.json")
115
  target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
116
  if not os.path.exists(target_tool_path):
 
117
  shutil.copy(default_tool_path, target_tool_path)
118
 
119
+ agent = TxAgent(
120
+ model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
121
+ rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
122
+ tool_files_dict={"new_tool": target_tool_path},
123
+ force_finish=True,
124
+ enable_checker=True,
125
+ step_rag_num=8,
126
+ seed=100,
127
+ additional_default_tools=[],
128
+ )
129
+ agent.init_model()
130
+ log_system_usage("After Load")
131
+ print("βœ… Agent Ready")
132
+ return agent
 
 
 
 
133
 
134
  def create_ui(agent):
135
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
 
141
  download_output = gr.File(label="Download Full Report")
142
 
143
  def analyze(message: str, history: List[dict], files: List):
 
 
 
 
 
 
144
  # Append user message
145
  history.append({"role": "user", "content": message})
146
  history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
147
  yield history, None
 
148
 
149
  extracted = ""
150
  file_hash_value = ""
151
  if files:
152
+ with ThreadPoolExecutor(max_workers=4) as executor:
153
+ futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
154
+ results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
155
+ extracted = "\n".join(results)
156
+ file_hash_value = file_hash(files[0].name) if files else ""
 
 
 
 
 
 
 
 
157
 
158
  prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
159
  1. List potential missed diagnoses
 
164
  {extracted[:12000]}
165
  ### Potential Oversights:
166
  """
 
167
 
168
  try:
169
  # Remove the temporary "Analyzing..." message
170
  if history and history[-1]["content"].startswith("⏳"):
171
  history.pop()
 
172
 
173
  # Process agent response
174
  for chunk in agent.run_gradio_chat(
175
  message=prompt,
176
+ history=[],
177
  temperature=0.2,
178
  max_new_tokens=2048,
179
  max_token=4096,
180
  call_agent=False,
181
  conversation=[],
182
  ):
 
183
  if chunk is None:
 
184
  continue
185
 
 
186
  if isinstance(chunk, list):
187
  for m in chunk:
188
  if hasattr(m, 'content') and m.content:
189
  history.append({"role": m.role, "content": sanitize_utf8(m.content)})
 
190
  yield history, None
 
191
  elif isinstance(chunk, str) and chunk.strip():
192
+ # Append new assistant message or update the last one
193
  if history and history[-1]["role"] == "assistant":
194
+ history[-1]["content"] += sanitize_utf8(chunk)
195
  else:
196
  history.append({"role": "assistant", "content": sanitize_utf8(chunk)})
 
197
  yield history, None
 
 
198
 
199
  # Provide report path if available
200
  report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
 
201
  yield history, report_path if report_path and os.path.exists(report_path) else None
202
 
203
  except Exception as e:
204
+ print("🚨 ERROR:", e)
205
  history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
206
  yield history, None
207
 
 
210
  return demo
211
 
212
  if __name__ == "__main__":
213
+ print("πŸš€ Launching app...")
214
+ agent = init_agent()
215
+ demo = create_ui(agent)
216
+ demo.queue(api_open=False).launch(
217
+ server_name="0.0.0.0",
218
+ server_port=7860,
219
+ show_error=True,
220
+ allowed_paths=[report_dir],
221
+ share=False
222
+ )