File size: 14,732 Bytes
f75a23b f394b25 d184610 f75a23b f394b25 d184610 f394b25 f75a23b 1c5bd8e d8282f1 d184610 d8282f1 a71a831 f75a23b a71a831 f75a23b 1c5bd8e 499e72e a71a831 f75a23b a71a831 d184610 a71a831 499e72e 828effe 1c5bd8e d184610 afdc6ee 9a8092d afdc6ee d8282f1 d184610 1c5bd8e d184610 3af8921 d184610 d8282f1 ad7372c 3af8921 d184610 3af8921 d184610 3af8921 d184610 d8282f1 3af8921 d8282f1 3af8921 d8282f1 befca65 3af8921 d184610 3af8921 1c5bd8e 3af8921 1c5bd8e 3af8921 e4d9325 d184610 3af8921 12ddaba 3af8921 e4d9325 3af8921 e4d9325 3af8921 d184610 3af8921 1c5bd8e befca65 f75a23b 3af8921 d184610 3af8921 d184610 f75a23b d184610 f75a23b d8282f1 f75a23b 9a8092d d8282f1 d184610 d8282f1 f75a23b d184610 3af8921 d8282f1 d184610 d8282f1 3af8921 d8282f1 3af8921 d8282f1 d184610 d8282f1 3af8921 d8282f1 3af8921 d8282f1 d184610 3af8921 afdc6ee d8282f1 afdc6ee 3af8921 d8282f1 3af8921 d184610 3af8921 d184610 d8282f1 d184610 3af8921 d184610 3af8921 d184610 d8282f1 d184610 d8282f1 afdc6ee 3af8921 9a8092d d8282f1 d184610 d8282f1 d184610 d8282f1 d184610 d8282f1 a71a831 55e3db0 f394b25 d8282f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any
import hashlib
import shutil
import re
from datetime import datetime
import time
import markdown
from collections import defaultdict
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
def file_hash(path: str) -> str:
"""Generate MD5 hash of file contents"""
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def clean_response(text: str) -> str:
"""Clean and normalize text output"""
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
# Remove unwanted patterns and normalize whitespace
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def extract_medical_data(df: pd.DataFrame) -> Dict[str, Any]:
"""Extract and organize medical data from DataFrame"""
medical_data = defaultdict(list)
for _, row in df.iterrows():
record = {
'booking': row.get('Booking Number', ''),
'form_name': row.get('Form Name', ''),
'form_item': row.get('Form Item', ''),
'response': row.get('Item Response', ''),
'date': row.get('Interview Date', ''),
'interviewer': row.get('Interviewer', ''),
'description': row.get('Description', '')
}
medical_data[row['Booking Number']].append(record)
return medical_data
def identify_red_flags(records: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Identify potential red flags across all medical records"""
red_flags = {
'symptoms': defaultdict(list),
'medications': defaultdict(list),
'diagnoses': defaultdict(list),
'vitals': defaultdict(list),
'labs': defaultdict(list),
'patients': defaultdict(list)
}
for booking, patient_records in records.items():
for record in patient_records:
form_name = record['form_name'].lower()
item = record['form_item'].lower()
response = record['response'].lower()
# Symptom patterns
if 'pain' in item or 'symptom' in form_name:
if 'severe' in response or 'chronic' in response:
red_flags['symptoms'][item].append((booking, response))
# Medication checks
elif 'medication' in form_name or 'drug' in form_name:
if 'interaction' in response or 'allergy' in response:
red_flags['medications'][item].append((booking, response))
# Diagnosis inconsistencies
elif 'diagnosis' in form_name:
if 'rule out' in response or 'possible' in response:
red_flags['diagnoses'][item].append((booking, response))
# Abnormal vitals
elif 'vital' in form_name:
try:
value = float(re.search(r'\d+\.?\d*', response).group())
if ('blood pressure' in item and value > 140) or \
('heart rate' in item and (value < 50 or value > 100)) or \
('temperature' in item and value > 38):
red_flags['vitals'][item].append((booking, response))
except:
pass
# Abnormal labs
elif 'lab' in form_name or 'test' in form_name:
if 'abnormal' in response or 'high' in response or 'low' in response:
red_flags['labs'][item].append((booking, response))
return red_flags
def generate_combined_prompt(all_records: Dict[str, Any], red_flags: Dict[str, Any]]) -> str:
"""Generate a single comprehensive prompt for all patient data"""
# Create summary of all records
records_summary = []
for booking, records in all_records.items():
records_summary.append(f"\n## Patient {booking}")
for r in records:
records_summary.append(
f"- {r['form_name']}: {r['form_item']} = {r['response']} "
f"({r['date']} by {r['interviewer']})\n {r['description']}"
)
# Format red flags with patient references
red_flags_text = []
for category, items in red_flags.items():
if items:
red_flags_text.append(f"\n### {category.capitalize()} Red Flags")
for item, entries in items.items():
patient_entries = defaultdict(list)
for booking, response in entries:
patient_entries[booking].append(response)
for booking, responses in patient_entries.items():
red_flags_text.append(
f"- {item} (Patient {booking}): {', '.join(responses)}"
)
prompt = f"""
**COMPREHENSIVE PATIENT ANALYSIS**
**Medical Records Summary**:
{"".join(records_summary)}
**Identified Red Flags Across All Patients**:
{"".join(red_flags_text) if red_flags_text else "No obvious red flags detected"}
**Analysis Instructions**:
1. Review ALL patient data holistically
2. Identify patterns that might indicate systemic issues
3. Check for recurring medication problems across patients
4. Note any common missed diagnoses
5. Flag any urgent cases needing immediate attention
6. Provide overall clinical recommendations
**Required Output Format**:
### Summary of Findings
[Overview of most significant findings across all patients]
### Common Missed Diagnoses
- [Conditions frequently overlooked across multiple patients]
- [Specific patients affected: Booking numbers]
### Recurring Medication Issues
- [Common drug interactions or inappropriate prescriptions]
- [Patients affected]
### Systemic Assessment Gaps
- [Patterns of incomplete assessments across patients]
- [Recommended additional tests]
### Critical Cases Needing Follow-up
- [Patients requiring urgent attention]
- [Specific reasons]
### Overall Recommendations
- [General recommendations for clinical practice]
- [Specific actions for different patient groups]
"""
return prompt
def parse_excel_to_combined_prompt(file_path: str) -> str:
"""Parse Excel file into a single comprehensive analysis prompt"""
try:
xl = pd.ExcelFile(file_path)
df = xl.parse(xl.sheet_names[0], header=0).fillna("")
medical_data = extract_medical_data(df)
red_flags = identify_red_flags(medical_data)
prompt = generate_combined_prompt(medical_data, red_flags)
return prompt
except Exception as e:
raise ValueError(f"Error parsing Excel file: {str(e)}")
def init_agent():
"""Initialize the TxAgent with appropriate settings"""
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
return agent
def create_ui(agent):
"""Create Gradio UI interface"""
with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
gr.Markdown("# 🏥 Comprehensive Clinical Analysis")
with gr.Tabs():
with gr.TabItem("Analysis"):
with gr.Row():
# Left column - Inputs
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Excel File",
file_types=[".xlsx"],
file_count="single",
interactive=True
)
msg_input = gr.Textbox(
label="Additional Instructions",
placeholder="Add any specific analysis requests...",
lines=3
)
with gr.Row():
clear_btn = gr.Button("Clear", variant="secondary")
send_btn = gr.Button("Analyze All Patients", variant="primary")
# Right column - Outputs
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Comprehensive Analysis Results",
height=600,
bubble_full_width=False,
show_copy_button=True,
render_markdown=True
)
download_output = gr.File(
label="Download Full Report",
interactive=False
)
with gr.TabItem("Instructions"):
gr.Markdown("""
## How to Use This Tool
1. **Upload Excel File**: Select your patient records Excel file
2. **Add Instructions** (Optional): Provide any specific analysis requests
3. **Click Analyze**: The system will process ALL patient records together
4. **Review Results**: Comprehensive analysis appears in the chat window
5. **Download Report**: Get a complete text report of all findings
### Key Features
- **Holistic analysis** of all patient records
- **Pattern detection** across multiple patients
- **Systemic issues** identification
- **Prioritized recommendations** based on severity
""")
def analyze(message: str, chat_history: List[Tuple[str, str]], file) -> Tuple[List[Tuple[str, str]], str]:
"""Main analysis function for all patients"""
if not file:
raise gr.Error("Please upload an Excel file first")
try:
# Initialize chat history
new_history = chat_history + [(message, None)]
new_history.append((None, "⏳ Processing all patient data..."))
yield new_history, None
# Generate combined prompt
prompt = parse_excel_to_combined_prompt(file.name)
# Run analysis
full_output = ""
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=2048, # Increased for comprehensive analysis
max_token=4096,
call_agent=False,
conversation=[],
):
if isinstance(result, list):
for r in result:
if hasattr(r, 'content') and r.content:
cleaned = clean_response(r.content)
full_output += cleaned + "\n"
elif isinstance(result, str):
cleaned = clean_response(result)
full_output += cleaned + "\n"
if full_output:
new_history[-1] = (None, full_output.strip())
yield new_history, None
# Save report
file_hash_value = file_hash(file.name)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
report_path = os.path.join(report_dir, f"comprehensive_{file_hash_value}_{timestamp}_report.md")
with open(report_path, "w", encoding="utf-8") as f:
f.write("# Comprehensive Clinical Analysis Report\n\n")
f.write(f"**Generated on**: {timestamp}\n\n")
f.write(f"**Source file**: {file.name}\n\n")
f.write(full_output)
yield new_history, report_path if os.path.exists(report_path) else None
except Exception as e:
new_history.append((None, f"❌ Error: {str(e)}"))
yield new_history, None
raise gr.Error(f"Analysis failed: {str(e)}")
def clear_chat():
"""Clear chat history and outputs"""
return [], None
# Event handlers
send_btn.click(
analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output],
api_name="analyze"
)
msg_input.submit(
analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output]
)
clear_btn.click(
clear_chat,
inputs=[],
outputs=[chatbot, download_output]
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.queue(
api_open=False,
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
except Exception as e:
print(f"Failed to launch application: {str(e)}")
sys.exit(1) |