File size: 14,732 Bytes
f75a23b
f394b25
d184610
f75a23b
f394b25
d184610
f394b25
f75a23b
 
1c5bd8e
d8282f1
 
d184610
d8282f1
 
a71a831
 
f75a23b
 
 
a71a831
 
f75a23b
1c5bd8e
499e72e
a71a831
f75a23b
 
 
 
 
 
 
 
 
a71a831
d184610
a71a831
499e72e
828effe
1c5bd8e
d184610
afdc6ee
 
9a8092d
afdc6ee
d8282f1
d184610
1c5bd8e
 
 
 
 
d184610
 
 
 
 
 
3af8921
d184610
 
 
 
 
 
 
 
 
 
d8282f1
ad7372c
3af8921
d184610
 
 
 
 
3af8921
 
d184610
 
3af8921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d184610
 
d8282f1
3af8921
 
 
 
 
 
 
 
 
 
 
d8282f1
3af8921
 
 
 
 
 
 
 
 
 
 
 
 
 
d8282f1
befca65
3af8921
d184610
 
3af8921
1c5bd8e
3af8921
 
1c5bd8e
3af8921
 
 
 
 
 
 
e4d9325
d184610
3af8921
 
 
 
 
 
12ddaba
3af8921
 
 
e4d9325
3af8921
 
 
e4d9325
3af8921
 
 
d184610
3af8921
 
 
1c5bd8e
befca65
f75a23b
3af8921
 
d184610
 
 
 
3af8921
 
 
d184610
 
 
f75a23b
d184610
f75a23b
 
d8282f1
f75a23b
9a8092d
d8282f1
d184610
 
 
 
 
 
 
 
 
 
 
 
d8282f1
f75a23b
d184610
 
3af8921
d8282f1
 
 
 
 
 
 
 
d184610
d8282f1
 
 
 
 
 
 
 
 
 
3af8921
d8282f1
 
 
 
3af8921
d8282f1
 
 
d184610
d8282f1
 
 
 
 
 
 
 
 
 
 
 
3af8921
 
 
d8282f1
3af8921
 
 
 
 
d8282f1
 
d184610
3af8921
afdc6ee
d8282f1
 
afdc6ee
3af8921
 
 
d8282f1
 
3af8921
 
d184610
3af8921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d184610
 
 
d8282f1
d184610
3af8921
d184610
 
3af8921
d184610
 
 
d8282f1
d184610
d8282f1
afdc6ee
3af8921
9a8092d
d8282f1
 
 
d184610
d8282f1
 
 
 
 
 
 
d184610
d8282f1
 
 
 
 
d184610
d8282f1
 
 
 
 
 
 
 
a71a831
55e3db0
f394b25
d8282f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any
import hashlib
import shutil
import re
from datetime import datetime
import time
import markdown
from collections import defaultdict

# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

def file_hash(path: str) -> str:
    """Generate MD5 hash of file contents"""
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def clean_response(text: str) -> str:
    """Clean and normalize text output"""
    try:
        text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
    except UnicodeError:
        text = text.encode('utf-8', 'replace').decode('utf-8')
    
    # Remove unwanted patterns and normalize whitespace
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def extract_medical_data(df: pd.DataFrame) -> Dict[str, Any]:
    """Extract and organize medical data from DataFrame"""
    medical_data = defaultdict(list)
    
    for _, row in df.iterrows():
        record = {
            'booking': row.get('Booking Number', ''),
            'form_name': row.get('Form Name', ''),
            'form_item': row.get('Form Item', ''),
            'response': row.get('Item Response', ''),
            'date': row.get('Interview Date', ''),
            'interviewer': row.get('Interviewer', ''),
            'description': row.get('Description', '')
        }
        medical_data[row['Booking Number']].append(record)
    
    return medical_data

def identify_red_flags(records: List[Dict[str, Any]]) -> Dict[str, Any]:
    """Identify potential red flags across all medical records"""
    red_flags = {
        'symptoms': defaultdict(list),
        'medications': defaultdict(list),
        'diagnoses': defaultdict(list),
        'vitals': defaultdict(list),
        'labs': defaultdict(list),
        'patients': defaultdict(list)
    }
    
    for booking, patient_records in records.items():
        for record in patient_records:
            form_name = record['form_name'].lower()
            item = record['form_item'].lower()
            response = record['response'].lower()
            
            # Symptom patterns
            if 'pain' in item or 'symptom' in form_name:
                if 'severe' in response or 'chronic' in response:
                    red_flags['symptoms'][item].append((booking, response))
            
            # Medication checks
            elif 'medication' in form_name or 'drug' in form_name:
                if 'interaction' in response or 'allergy' in response:
                    red_flags['medications'][item].append((booking, response))
            
            # Diagnosis inconsistencies
            elif 'diagnosis' in form_name:
                if 'rule out' in response or 'possible' in response:
                    red_flags['diagnoses'][item].append((booking, response))
            
            # Abnormal vitals
            elif 'vital' in form_name:
                try:
                    value = float(re.search(r'\d+\.?\d*', response).group())
                    if ('blood pressure' in item and value > 140) or \
                       ('heart rate' in item and (value < 50 or value > 100)) or \
                       ('temperature' in item and value > 38):
                        red_flags['vitals'][item].append((booking, response))
                except:
                    pass
            
            # Abnormal labs
            elif 'lab' in form_name or 'test' in form_name:
                if 'abnormal' in response or 'high' in response or 'low' in response:
                    red_flags['labs'][item].append((booking, response))
    
    return red_flags

def generate_combined_prompt(all_records: Dict[str, Any], red_flags: Dict[str, Any]]) -> str:
    """Generate a single comprehensive prompt for all patient data"""
    # Create summary of all records
    records_summary = []
    for booking, records in all_records.items():
        records_summary.append(f"\n## Patient {booking}")
        for r in records:
            records_summary.append(
                f"- {r['form_name']}: {r['form_item']} = {r['response']} "
                f"({r['date']} by {r['interviewer']})\n  {r['description']}"
            )
    
    # Format red flags with patient references
    red_flags_text = []
    for category, items in red_flags.items():
        if items:
            red_flags_text.append(f"\n### {category.capitalize()} Red Flags")
            for item, entries in items.items():
                patient_entries = defaultdict(list)
                for booking, response in entries:
                    patient_entries[booking].append(response)
                
                for booking, responses in patient_entries.items():
                    red_flags_text.append(
                        f"- {item} (Patient {booking}): {', '.join(responses)}"
                    )
    
    prompt = f"""
**COMPREHENSIVE PATIENT ANALYSIS**

**Medical Records Summary**:
{"".join(records_summary)}

**Identified Red Flags Across All Patients**:
{"".join(red_flags_text) if red_flags_text else "No obvious red flags detected"}

**Analysis Instructions**:
1. Review ALL patient data holistically
2. Identify patterns that might indicate systemic issues
3. Check for recurring medication problems across patients
4. Note any common missed diagnoses
5. Flag any urgent cases needing immediate attention
6. Provide overall clinical recommendations

**Required Output Format**:
### Summary of Findings
[Overview of most significant findings across all patients]

### Common Missed Diagnoses
- [Conditions frequently overlooked across multiple patients]
- [Specific patients affected: Booking numbers]

### Recurring Medication Issues
- [Common drug interactions or inappropriate prescriptions]
- [Patients affected]

### Systemic Assessment Gaps
- [Patterns of incomplete assessments across patients]
- [Recommended additional tests]

### Critical Cases Needing Follow-up
- [Patients requiring urgent attention]
- [Specific reasons]

### Overall Recommendations
- [General recommendations for clinical practice]
- [Specific actions for different patient groups]
"""
    return prompt

def parse_excel_to_combined_prompt(file_path: str) -> str:
    """Parse Excel file into a single comprehensive analysis prompt"""
    try:
        xl = pd.ExcelFile(file_path)
        df = xl.parse(xl.sheet_names[0], header=0).fillna("")
        medical_data = extract_medical_data(df)
        red_flags = identify_red_flags(medical_data)
        prompt = generate_combined_prompt(medical_data, red_flags)
        return prompt
    except Exception as e:
        raise ValueError(f"Error parsing Excel file: {str(e)}")

def init_agent():
    """Initialize the TxAgent with appropriate settings"""
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)
    
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    return agent

def create_ui(agent):
    """Create Gradio UI interface"""
    with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
        gr.Markdown("# 🏥 Comprehensive Clinical Analysis")
        
        with gr.Tabs():
            with gr.TabItem("Analysis"):
                with gr.Row():
                    # Left column - Inputs
                    with gr.Column(scale=1):
                        file_upload = gr.File(
                            label="Upload Excel File",
                            file_types=[".xlsx"], 
                            file_count="single",
                            interactive=True
                        )
                        msg_input = gr.Textbox(
                            label="Additional Instructions",
                            placeholder="Add any specific analysis requests...",
                            lines=3
                        )
                        with gr.Row():
                            clear_btn = gr.Button("Clear", variant="secondary")
                            send_btn = gr.Button("Analyze All Patients", variant="primary")
                    
                    # Right column - Outputs
                    with gr.Column(scale=2):
                        chatbot = gr.Chatbot(
                            label="Comprehensive Analysis Results",
                            height=600,
                            bubble_full_width=False,
                            show_copy_button=True,
                            render_markdown=True
                        )
                        download_output = gr.File(
                            label="Download Full Report",
                            interactive=False
                        )
            
            with gr.TabItem("Instructions"):
                gr.Markdown("""
                ## How to Use This Tool
                
                1. **Upload Excel File**: Select your patient records Excel file
                2. **Add Instructions** (Optional): Provide any specific analysis requests
                3. **Click Analyze**: The system will process ALL patient records together
                4. **Review Results**: Comprehensive analysis appears in the chat window
                5. **Download Report**: Get a complete text report of all findings
                
                ### Key Features
                - **Holistic analysis** of all patient records
                - **Pattern detection** across multiple patients
                - **Systemic issues** identification
                - **Prioritized recommendations** based on severity
                """)
        
        def analyze(message: str, chat_history: List[Tuple[str, str]], file) -> Tuple[List[Tuple[str, str]], str]:
            """Main analysis function for all patients"""
            if not file:
                raise gr.Error("Please upload an Excel file first")
            
            try:
                # Initialize chat history
                new_history = chat_history + [(message, None)]
                new_history.append((None, "⏳ Processing all patient data..."))
                yield new_history, None
                
                # Generate combined prompt
                prompt = parse_excel_to_combined_prompt(file.name)
                
                # Run analysis
                full_output = ""
                for result in agent.run_gradio_chat(
                    message=prompt,
                    history=[],
                    temperature=0.2,
                    max_new_tokens=2048,  # Increased for comprehensive analysis
                    max_token=4096,
                    call_agent=False,
                    conversation=[],
                ):
                    if isinstance(result, list):
                        for r in result:
                            if hasattr(r, 'content') and r.content:
                                cleaned = clean_response(r.content)
                                full_output += cleaned + "\n"
                    elif isinstance(result, str):
                        cleaned = clean_response(result)
                        full_output += cleaned + "\n"
                    
                    if full_output:
                        new_history[-1] = (None, full_output.strip())
                        yield new_history, None
                
                # Save report
                file_hash_value = file_hash(file.name)
                timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
                report_path = os.path.join(report_dir, f"comprehensive_{file_hash_value}_{timestamp}_report.md")
                
                with open(report_path, "w", encoding="utf-8") as f:
                    f.write("# Comprehensive Clinical Analysis Report\n\n")
                    f.write(f"**Generated on**: {timestamp}\n\n")
                    f.write(f"**Source file**: {file.name}\n\n")
                    f.write(full_output)
                
                yield new_history, report_path if os.path.exists(report_path) else None
                
            except Exception as e:
                new_history.append((None, f"❌ Error: {str(e)}"))
                yield new_history, None
                raise gr.Error(f"Analysis failed: {str(e)}")
        
        def clear_chat():
            """Clear chat history and outputs"""
            return [], None
        
        # Event handlers
        send_btn.click(
            analyze,
            inputs=[msg_input, chatbot, file_upload],
            outputs=[chatbot, download_output],
            api_name="analyze"
        )
        
        msg_input.submit(
            analyze,
            inputs=[msg_input, chatbot, file_upload],
            outputs=[chatbot, download_output]
        )
        
        clear_btn.click(
            clear_chat,
            inputs=[],
            outputs=[chatbot, download_output]
        )
    
    return demo

if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        
        demo.queue(
            api_open=False,
            max_size=20
        ).launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=[report_dir],
            share=False
        )
    except Exception as e:
        print(f"Failed to launch application: {str(e)}")
        sys.exit(1)