Update app.py
Browse files
app.py
CHANGED
@@ -57,6 +57,7 @@ def extract_medical_data(df: pd.DataFrame) -> Dict[str, Any]:
|
|
57 |
|
58 |
for _, row in df.iterrows():
|
59 |
record = {
|
|
|
60 |
'form_name': row.get('Form Name', ''),
|
61 |
'form_item': row.get('Form Item', ''),
|
62 |
'response': row.get('Item Response', ''),
|
@@ -69,117 +70,134 @@ def extract_medical_data(df: pd.DataFrame) -> Dict[str, Any]:
|
|
69 |
return medical_data
|
70 |
|
71 |
def identify_red_flags(records: List[Dict[str, Any]]) -> Dict[str, Any]:
|
72 |
-
"""Identify potential red flags
|
73 |
red_flags = {
|
74 |
'symptoms': defaultdict(list),
|
75 |
'medications': defaultdict(list),
|
76 |
'diagnoses': defaultdict(list),
|
77 |
'vitals': defaultdict(list),
|
78 |
-
'labs': defaultdict(list)
|
|
|
79 |
}
|
80 |
|
81 |
-
for
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
if '
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
116 |
|
117 |
return red_flags
|
118 |
|
119 |
-
def
|
120 |
-
"""Generate
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
prompt = f"""
|
135 |
-
**
|
136 |
|
137 |
**Medical Records Summary**:
|
138 |
-
{
|
139 |
|
140 |
-
**Identified Red Flags**:
|
141 |
-
{red_flags_text if red_flags_text else "No obvious red flags detected"}
|
142 |
|
143 |
-
**
|
144 |
-
1. Review
|
145 |
-
2. Identify
|
146 |
-
3. Check for medication
|
147 |
-
4. Note any
|
148 |
-
5. Flag any urgent
|
149 |
-
6. Provide
|
150 |
|
151 |
**Required Output Format**:
|
152 |
-
###
|
153 |
-
|
|
|
|
|
|
|
|
|
154 |
|
155 |
-
### Medication Issues
|
156 |
-
- [
|
|
|
157 |
|
158 |
-
### Assessment Gaps
|
159 |
-
- [
|
|
|
160 |
|
161 |
-
###
|
162 |
-
- [
|
|
|
163 |
|
164 |
-
###
|
165 |
-
- [
|
|
|
166 |
"""
|
167 |
return prompt
|
168 |
|
169 |
-
def
|
170 |
-
"""Parse Excel file into
|
171 |
try:
|
172 |
xl = pd.ExcelFile(file_path)
|
173 |
df = xl.parse(xl.sheet_names[0], header=0).fillna("")
|
174 |
medical_data = extract_medical_data(df)
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
red_flags = identify_red_flags(records)
|
179 |
-
prompt = generate_analysis_prompt(booking, records, red_flags)
|
180 |
-
prompts.append((booking, prompt))
|
181 |
-
|
182 |
-
return prompts
|
183 |
except Exception as e:
|
184 |
raise ValueError(f"Error parsing Excel file: {str(e)}")
|
185 |
|
@@ -204,14 +222,10 @@ def init_agent():
|
|
204 |
agent.init_model()
|
205 |
return agent
|
206 |
|
207 |
-
def format_markdown(text: str) -> str:
|
208 |
-
"""Convert markdown text to HTML for better display"""
|
209 |
-
return markdown.markdown(text, extensions=['fenced_code', 'tables'])
|
210 |
-
|
211 |
def create_ui(agent):
|
212 |
"""Create Gradio UI interface"""
|
213 |
with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
|
214 |
-
gr.Markdown("# 🏥 Clinical
|
215 |
|
216 |
with gr.Tabs():
|
217 |
with gr.TabItem("Analysis"):
|
@@ -231,12 +245,12 @@ def create_ui(agent):
|
|
231 |
)
|
232 |
with gr.Row():
|
233 |
clear_btn = gr.Button("Clear", variant="secondary")
|
234 |
-
send_btn = gr.Button("Analyze", variant="primary")
|
235 |
|
236 |
# Right column - Outputs
|
237 |
with gr.Column(scale=2):
|
238 |
chatbot = gr.Chatbot(
|
239 |
-
label="Analysis Results",
|
240 |
height=600,
|
241 |
bubble_full_width=False,
|
242 |
show_copy_button=True,
|
@@ -253,94 +267,62 @@ def create_ui(agent):
|
|
253 |
|
254 |
1. **Upload Excel File**: Select your patient records Excel file
|
255 |
2. **Add Instructions** (Optional): Provide any specific analysis requests
|
256 |
-
3. **Click Analyze**: The system will process
|
257 |
-
4. **Review Results**:
|
258 |
-
5. **Download Report**: Get a
|
259 |
|
260 |
-
###
|
261 |
-
|
262 |
-
-
|
263 |
-
-
|
264 |
-
-
|
265 |
-
- Item Response (patient response or value)
|
266 |
-
- Interview Date (date of recording)
|
267 |
-
- Interviewer (who recorded the data)
|
268 |
-
- Description (additional notes)
|
269 |
-
|
270 |
-
### Analysis Includes
|
271 |
-
- **Missed diagnoses**: Potential conditions not identified
|
272 |
-
- **Medication issues**: Conflicts, side effects, inappropriate prescriptions
|
273 |
-
- **Assessment gaps**: Missing tests or incomplete evaluations
|
274 |
-
- **Urgent follow-up**: Critical findings needing immediate attention
|
275 |
-
- **Clinical recommendations**: Actionable next steps
|
276 |
""")
|
277 |
|
278 |
-
def format_message(role: str, content: str) -> Tuple[str, str]:
|
279 |
-
"""Format messages for the chatbot in (user, bot) format"""
|
280 |
-
if role == "user":
|
281 |
-
return (content, None)
|
282 |
-
else:
|
283 |
-
return (None, content)
|
284 |
-
|
285 |
def analyze(message: str, chat_history: List[Tuple[str, str]], file) -> Tuple[List[Tuple[str, str]], str]:
|
286 |
-
"""Main analysis function"""
|
287 |
if not file:
|
288 |
raise gr.Error("Please upload an Excel file first")
|
289 |
|
290 |
try:
|
291 |
-
# Initialize chat history
|
292 |
-
new_history = chat_history + [
|
293 |
-
new_history.append(
|
294 |
yield new_history, None
|
295 |
|
296 |
-
|
297 |
-
|
298 |
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
output = f"## Patient Booking: {booking}\n{chunk_output.strip()}\n"
|
322 |
-
new_history[-1] = format_message("assistant", output)
|
323 |
-
yield new_history, None
|
324 |
-
|
325 |
-
except Exception as e:
|
326 |
-
error_msg = f"⚠️ Error processing booking {booking}: {str(e)}"
|
327 |
-
new_history.append(format_message("assistant", error_msg))
|
328 |
-
yield new_history, None
|
329 |
-
continue
|
330 |
-
|
331 |
-
if chunk_output:
|
332 |
-
output = f"## Patient Booking: {booking}\n{chunk_output.strip()}\n"
|
333 |
-
new_history.append(format_message("assistant", output))
|
334 |
-
full_output += output + "\n"
|
335 |
yield new_history, None
|
336 |
|
337 |
# Save report
|
338 |
file_hash_value = file_hash(file.name)
|
339 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
340 |
-
report_path = os.path.join(report_dir, f"{file_hash_value}_{timestamp}_report.md")
|
341 |
|
342 |
with open(report_path, "w", encoding="utf-8") as f:
|
343 |
-
f.write("# Clinical
|
344 |
f.write(f"**Generated on**: {timestamp}\n\n")
|
345 |
f.write(f"**Source file**: {file.name}\n\n")
|
346 |
f.write(full_output)
|
@@ -348,7 +330,7 @@ def create_ui(agent):
|
|
348 |
yield new_history, report_path if os.path.exists(report_path) else None
|
349 |
|
350 |
except Exception as e:
|
351 |
-
new_history.append(
|
352 |
yield new_history, None
|
353 |
raise gr.Error(f"Analysis failed: {str(e)}")
|
354 |
|
|
|
57 |
|
58 |
for _, row in df.iterrows():
|
59 |
record = {
|
60 |
+
'booking': row.get('Booking Number', ''),
|
61 |
'form_name': row.get('Form Name', ''),
|
62 |
'form_item': row.get('Form Item', ''),
|
63 |
'response': row.get('Item Response', ''),
|
|
|
70 |
return medical_data
|
71 |
|
72 |
def identify_red_flags(records: List[Dict[str, Any]]) -> Dict[str, Any]:
|
73 |
+
"""Identify potential red flags across all medical records"""
|
74 |
red_flags = {
|
75 |
'symptoms': defaultdict(list),
|
76 |
'medications': defaultdict(list),
|
77 |
'diagnoses': defaultdict(list),
|
78 |
'vitals': defaultdict(list),
|
79 |
+
'labs': defaultdict(list),
|
80 |
+
'patients': defaultdict(list)
|
81 |
}
|
82 |
|
83 |
+
for booking, patient_records in records.items():
|
84 |
+
for record in patient_records:
|
85 |
+
form_name = record['form_name'].lower()
|
86 |
+
item = record['form_item'].lower()
|
87 |
+
response = record['response'].lower()
|
88 |
+
|
89 |
+
# Symptom patterns
|
90 |
+
if 'pain' in item or 'symptom' in form_name:
|
91 |
+
if 'severe' in response or 'chronic' in response:
|
92 |
+
red_flags['symptoms'][item].append((booking, response))
|
93 |
+
|
94 |
+
# Medication checks
|
95 |
+
elif 'medication' in form_name or 'drug' in form_name:
|
96 |
+
if 'interaction' in response or 'allergy' in response:
|
97 |
+
red_flags['medications'][item].append((booking, response))
|
98 |
+
|
99 |
+
# Diagnosis inconsistencies
|
100 |
+
elif 'diagnosis' in form_name:
|
101 |
+
if 'rule out' in response or 'possible' in response:
|
102 |
+
red_flags['diagnoses'][item].append((booking, response))
|
103 |
+
|
104 |
+
# Abnormal vitals
|
105 |
+
elif 'vital' in form_name:
|
106 |
+
try:
|
107 |
+
value = float(re.search(r'\d+\.?\d*', response).group())
|
108 |
+
if ('blood pressure' in item and value > 140) or \
|
109 |
+
('heart rate' in item and (value < 50 or value > 100)) or \
|
110 |
+
('temperature' in item and value > 38):
|
111 |
+
red_flags['vitals'][item].append((booking, response))
|
112 |
+
except:
|
113 |
+
pass
|
114 |
+
|
115 |
+
# Abnormal labs
|
116 |
+
elif 'lab' in form_name or 'test' in form_name:
|
117 |
+
if 'abnormal' in response or 'high' in response or 'low' in response:
|
118 |
+
red_flags['labs'][item].append((booking, response))
|
119 |
|
120 |
return red_flags
|
121 |
|
122 |
+
def generate_combined_prompt(all_records: Dict[str, Any], red_flags: Dict[str, Any]]) -> str:
|
123 |
+
"""Generate a single comprehensive prompt for all patient data"""
|
124 |
+
# Create summary of all records
|
125 |
+
records_summary = []
|
126 |
+
for booking, records in all_records.items():
|
127 |
+
records_summary.append(f"\n## Patient {booking}")
|
128 |
+
for r in records:
|
129 |
+
records_summary.append(
|
130 |
+
f"- {r['form_name']}: {r['form_item']} = {r['response']} "
|
131 |
+
f"({r['date']} by {r['interviewer']})\n {r['description']}"
|
132 |
+
)
|
133 |
|
134 |
+
# Format red flags with patient references
|
135 |
+
red_flags_text = []
|
136 |
+
for category, items in red_flags.items():
|
137 |
+
if items:
|
138 |
+
red_flags_text.append(f"\n### {category.capitalize()} Red Flags")
|
139 |
+
for item, entries in items.items():
|
140 |
+
patient_entries = defaultdict(list)
|
141 |
+
for booking, response in entries:
|
142 |
+
patient_entries[booking].append(response)
|
143 |
+
|
144 |
+
for booking, responses in patient_entries.items():
|
145 |
+
red_flags_text.append(
|
146 |
+
f"- {item} (Patient {booking}): {', '.join(responses)}"
|
147 |
+
)
|
148 |
|
149 |
prompt = f"""
|
150 |
+
**COMPREHENSIVE PATIENT ANALYSIS**
|
151 |
|
152 |
**Medical Records Summary**:
|
153 |
+
{"".join(records_summary)}
|
154 |
|
155 |
+
**Identified Red Flags Across All Patients**:
|
156 |
+
{"".join(red_flags_text) if red_flags_text else "No obvious red flags detected"}
|
157 |
|
158 |
+
**Analysis Instructions**:
|
159 |
+
1. Review ALL patient data holistically
|
160 |
+
2. Identify patterns that might indicate systemic issues
|
161 |
+
3. Check for recurring medication problems across patients
|
162 |
+
4. Note any common missed diagnoses
|
163 |
+
5. Flag any urgent cases needing immediate attention
|
164 |
+
6. Provide overall clinical recommendations
|
165 |
|
166 |
**Required Output Format**:
|
167 |
+
### Summary of Findings
|
168 |
+
[Overview of most significant findings across all patients]
|
169 |
+
|
170 |
+
### Common Missed Diagnoses
|
171 |
+
- [Conditions frequently overlooked across multiple patients]
|
172 |
+
- [Specific patients affected: Booking numbers]
|
173 |
|
174 |
+
### Recurring Medication Issues
|
175 |
+
- [Common drug interactions or inappropriate prescriptions]
|
176 |
+
- [Patients affected]
|
177 |
|
178 |
+
### Systemic Assessment Gaps
|
179 |
+
- [Patterns of incomplete assessments across patients]
|
180 |
+
- [Recommended additional tests]
|
181 |
|
182 |
+
### Critical Cases Needing Follow-up
|
183 |
+
- [Patients requiring urgent attention]
|
184 |
+
- [Specific reasons]
|
185 |
|
186 |
+
### Overall Recommendations
|
187 |
+
- [General recommendations for clinical practice]
|
188 |
+
- [Specific actions for different patient groups]
|
189 |
"""
|
190 |
return prompt
|
191 |
|
192 |
+
def parse_excel_to_combined_prompt(file_path: str) -> str:
|
193 |
+
"""Parse Excel file into a single comprehensive analysis prompt"""
|
194 |
try:
|
195 |
xl = pd.ExcelFile(file_path)
|
196 |
df = xl.parse(xl.sheet_names[0], header=0).fillna("")
|
197 |
medical_data = extract_medical_data(df)
|
198 |
+
red_flags = identify_red_flags(medical_data)
|
199 |
+
prompt = generate_combined_prompt(medical_data, red_flags)
|
200 |
+
return prompt
|
|
|
|
|
|
|
|
|
|
|
201 |
except Exception as e:
|
202 |
raise ValueError(f"Error parsing Excel file: {str(e)}")
|
203 |
|
|
|
222 |
agent.init_model()
|
223 |
return agent
|
224 |
|
|
|
|
|
|
|
|
|
225 |
def create_ui(agent):
|
226 |
"""Create Gradio UI interface"""
|
227 |
with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
|
228 |
+
gr.Markdown("# 🏥 Comprehensive Clinical Analysis")
|
229 |
|
230 |
with gr.Tabs():
|
231 |
with gr.TabItem("Analysis"):
|
|
|
245 |
)
|
246 |
with gr.Row():
|
247 |
clear_btn = gr.Button("Clear", variant="secondary")
|
248 |
+
send_btn = gr.Button("Analyze All Patients", variant="primary")
|
249 |
|
250 |
# Right column - Outputs
|
251 |
with gr.Column(scale=2):
|
252 |
chatbot = gr.Chatbot(
|
253 |
+
label="Comprehensive Analysis Results",
|
254 |
height=600,
|
255 |
bubble_full_width=False,
|
256 |
show_copy_button=True,
|
|
|
267 |
|
268 |
1. **Upload Excel File**: Select your patient records Excel file
|
269 |
2. **Add Instructions** (Optional): Provide any specific analysis requests
|
270 |
+
3. **Click Analyze**: The system will process ALL patient records together
|
271 |
+
4. **Review Results**: Comprehensive analysis appears in the chat window
|
272 |
+
5. **Download Report**: Get a complete text report of all findings
|
273 |
|
274 |
+
### Key Features
|
275 |
+
- **Holistic analysis** of all patient records
|
276 |
+
- **Pattern detection** across multiple patients
|
277 |
+
- **Systemic issues** identification
|
278 |
+
- **Prioritized recommendations** based on severity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
""")
|
280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
def analyze(message: str, chat_history: List[Tuple[str, str]], file) -> Tuple[List[Tuple[str, str]], str]:
|
282 |
+
"""Main analysis function for all patients"""
|
283 |
if not file:
|
284 |
raise gr.Error("Please upload an Excel file first")
|
285 |
|
286 |
try:
|
287 |
+
# Initialize chat history
|
288 |
+
new_history = chat_history + [(message, None)]
|
289 |
+
new_history.append((None, "⏳ Processing all patient data..."))
|
290 |
yield new_history, None
|
291 |
|
292 |
+
# Generate combined prompt
|
293 |
+
prompt = parse_excel_to_combined_prompt(file.name)
|
294 |
|
295 |
+
# Run analysis
|
296 |
+
full_output = ""
|
297 |
+
for result in agent.run_gradio_chat(
|
298 |
+
message=prompt,
|
299 |
+
history=[],
|
300 |
+
temperature=0.2,
|
301 |
+
max_new_tokens=2048, # Increased for comprehensive analysis
|
302 |
+
max_token=4096,
|
303 |
+
call_agent=False,
|
304 |
+
conversation=[],
|
305 |
+
):
|
306 |
+
if isinstance(result, list):
|
307 |
+
for r in result:
|
308 |
+
if hasattr(r, 'content') and r.content:
|
309 |
+
cleaned = clean_response(r.content)
|
310 |
+
full_output += cleaned + "\n"
|
311 |
+
elif isinstance(result, str):
|
312 |
+
cleaned = clean_response(result)
|
313 |
+
full_output += cleaned + "\n"
|
314 |
+
|
315 |
+
if full_output:
|
316 |
+
new_history[-1] = (None, full_output.strip())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
yield new_history, None
|
318 |
|
319 |
# Save report
|
320 |
file_hash_value = file_hash(file.name)
|
321 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
322 |
+
report_path = os.path.join(report_dir, f"comprehensive_{file_hash_value}_{timestamp}_report.md")
|
323 |
|
324 |
with open(report_path, "w", encoding="utf-8") as f:
|
325 |
+
f.write("# Comprehensive Clinical Analysis Report\n\n")
|
326 |
f.write(f"**Generated on**: {timestamp}\n\n")
|
327 |
f.write(f"**Source file**: {file.name}\n\n")
|
328 |
f.write(full_output)
|
|
|
330 |
yield new_history, report_path if os.path.exists(report_path) else None
|
331 |
|
332 |
except Exception as e:
|
333 |
+
new_history.append((None, f"❌ Error: {str(e)}"))
|
334 |
yield new_history, None
|
335 |
raise gr.Error(f"Analysis failed: {str(e)}")
|
336 |
|