Update app.py
Browse files
app.py
CHANGED
@@ -2,34 +2,26 @@ import sys
|
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import pdfplumber
|
|
|
5 |
import gradio as gr
|
6 |
-
from typing import List
|
7 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
8 |
import hashlib
|
9 |
import shutil
|
10 |
import re
|
|
|
|
|
11 |
import logging
|
12 |
import torch
|
13 |
import gc
|
14 |
from diskcache import Cache
|
15 |
-
|
16 |
-
from functools import lru_cache
|
17 |
-
from difflib import SequenceMatcher
|
18 |
|
19 |
# Configure logging
|
20 |
logging.basicConfig(level=logging.INFO)
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
23 |
-
#
|
24 |
-
MAX_TOKENS = 1800
|
25 |
-
BATCH_SIZE = 1
|
26 |
-
MAX_WORKERS = 2
|
27 |
-
CHUNK_SIZE = 5
|
28 |
-
MODEL_MAX_TOKENS = 131072
|
29 |
-
MAX_TEXT_LENGTH = 500000
|
30 |
-
MAX_ROWS_TO_PROCESS = 1000 # Limit for Excel/CSV rows
|
31 |
-
|
32 |
-
# Persistent directory setup
|
33 |
persistent_dir = "/data/hf_cache"
|
34 |
os.makedirs(persistent_dir, exist_ok=True)
|
35 |
|
@@ -37,12 +29,16 @@ model_cache_dir = os.path.join(persistent_dir, "txagent_models")
|
|
37 |
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
38 |
file_cache_dir = os.path.join(persistent_dir, "cache")
|
39 |
report_dir = os.path.join(persistent_dir, "reports")
|
40 |
-
os.
|
|
|
|
|
|
|
41 |
|
42 |
-
os.environ
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
46 |
|
47 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
48 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
@@ -50,291 +46,295 @@ sys.path.insert(0, src_path)
|
|
50 |
|
51 |
from txagent.txagent import TxAgent
|
52 |
|
53 |
-
# Initialize cache
|
54 |
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)
|
55 |
|
56 |
-
@lru_cache(maxsize=1)
|
57 |
-
def get_tokenizer():
|
58 |
-
return AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
|
59 |
-
|
60 |
def sanitize_utf8(text: str) -> str:
|
61 |
return text.encode("utf-8", "ignore").decode("utf-8")
|
62 |
|
63 |
def file_hash(path: str) -> str:
|
64 |
-
hash_md5 = hashlib.md5()
|
65 |
with open(path, "rb") as f:
|
66 |
-
|
67 |
-
hash_md5.update(chunk)
|
68 |
-
return hash_md5.hexdigest()
|
69 |
-
|
70 |
-
def extract_pdf_page(page, tokenizer, max_tokens=MAX_TOKENS) -> List[str]:
|
71 |
-
try:
|
72 |
-
text = page.extract_text() or ""
|
73 |
-
text = sanitize_utf8(text)
|
74 |
-
if len(text) > MAX_TEXT_LENGTH // 10:
|
75 |
-
text = text[:MAX_TEXT_LENGTH // 10]
|
76 |
-
|
77 |
-
tokens = tokenizer.encode(text, add_special_tokens=False)
|
78 |
-
if len(tokens) > max_tokens:
|
79 |
-
chunks = []
|
80 |
-
current_chunk = []
|
81 |
-
current_length = 0
|
82 |
-
for token in tokens:
|
83 |
-
if current_length + 1 > max_tokens:
|
84 |
-
chunks.append(tokenizer.decode(current_chunk))
|
85 |
-
current_chunk = [token]
|
86 |
-
current_length = 1
|
87 |
-
else:
|
88 |
-
current_chunk.append(token)
|
89 |
-
current_length += 1
|
90 |
-
if current_chunk:
|
91 |
-
chunks.append(tokenizer.decode(current_chunk))
|
92 |
-
return chunks
|
93 |
-
return [text]
|
94 |
-
except Exception as e:
|
95 |
-
logger.warning(f"Error extracting page {page.page_number}: {str(e)}")
|
96 |
-
return []
|
97 |
|
98 |
-
def extract_all_pages(file_path: str) ->
|
99 |
try:
|
100 |
-
tokenizer = get_tokenizer()
|
101 |
with pdfplumber.open(file_path) as pdf:
|
102 |
total_pages = len(pdf.pages)
|
103 |
if total_pages == 0:
|
104 |
-
return
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
except Exception as e:
|
119 |
-
logger.error(
|
120 |
-
return
|
121 |
-
|
122 |
-
def excel_to_json(file_path: str) -> List[Dict]:
|
123 |
-
engines = ['openpyxl', 'xlrd']
|
124 |
-
for engine in engines:
|
125 |
-
try:
|
126 |
-
with pd.ExcelFile(file_path, engine=engine) as excel_file:
|
127 |
-
sheets = excel_file.sheet_names
|
128 |
-
if not sheets:
|
129 |
-
return [{"error": "No sheets found"}]
|
130 |
-
|
131 |
-
results = []
|
132 |
-
for sheet_name in sheets[:3]: # Limit to first 3 sheets
|
133 |
-
try:
|
134 |
-
df = pd.read_excel(
|
135 |
-
excel_file,
|
136 |
-
sheet_name=sheet_name,
|
137 |
-
header=None,
|
138 |
-
dtype=str,
|
139 |
-
na_filter=False,
|
140 |
-
nrows=MAX_ROWS_TO_PROCESS # Limit rows
|
141 |
-
)
|
142 |
-
if not df.empty:
|
143 |
-
rows = df.head(MAX_ROWS_TO_PROCESS).values.tolist()
|
144 |
-
results.append({
|
145 |
-
"filename": os.path.basename(file_path),
|
146 |
-
"sheet": sheet_name,
|
147 |
-
"rows": rows,
|
148 |
-
"type": "excel"
|
149 |
-
})
|
150 |
-
except Exception as e:
|
151 |
-
logger.warning(f"Error processing sheet {sheet_name}: {str(e)}")
|
152 |
-
continue
|
153 |
-
|
154 |
-
return results if results else [{"error": "No readable data found"}]
|
155 |
-
except Exception as e:
|
156 |
-
logger.warning(f"Excel engine {engine} failed: {str(e)}")
|
157 |
-
continue
|
158 |
-
|
159 |
-
return [{"error": "Could not process Excel file with any engine"}]
|
160 |
|
161 |
-
def
|
162 |
try:
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
encoding_errors='replace',
|
168 |
-
on_bad_lines='skip',
|
169 |
-
nrows=MAX_ROWS_TO_PROCESS # Limit rows
|
170 |
-
)
|
171 |
-
if df.empty:
|
172 |
-
return [{"error": "CSV file is empty"}]
|
173 |
-
|
174 |
-
return [{
|
175 |
-
"filename": os.path.basename(file_path),
|
176 |
-
"rows": df.values.tolist(),
|
177 |
-
"type": "csv"
|
178 |
-
}]
|
179 |
-
except Exception as e:
|
180 |
-
logger.error(f"CSV processing error: {e}")
|
181 |
-
return [{"error": f"CSV processing error: {str(e)}"}]
|
182 |
|
183 |
-
def process_file_cached(file_path: str, file_type: str) -> List[Dict]:
|
184 |
-
try:
|
185 |
-
logger.info(f"Processing {file_type} file: {os.path.basename(file_path)}")
|
186 |
-
|
187 |
if file_type == "pdf":
|
188 |
-
|
189 |
-
|
190 |
-
"filename": os.path.basename(file_path),
|
191 |
-
"content": chunk,
|
192 |
-
"type": "pdf"
|
193 |
-
} for chunk in chunks]
|
194 |
-
|
195 |
-
elif file_type in ["xls", "xlsx"]:
|
196 |
-
return excel_to_json(file_path)
|
197 |
-
|
198 |
elif file_type == "csv":
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
except Exception as e:
|
203 |
-
logger.error(
|
204 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
def clean_response(text: str) -> str:
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
for
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
def init_agent():
|
222 |
logger.info("Initializing model...")
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
224 |
agent = TxAgent(
|
225 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
226 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
227 |
-
tool_files_dict={"new_tool":
|
228 |
force_finish=True,
|
229 |
enable_checker=False,
|
230 |
step_rag_num=4,
|
231 |
seed=100,
|
|
|
232 |
)
|
233 |
agent.init_model()
|
|
|
234 |
logger.info("Agent Ready")
|
235 |
return agent
|
236 |
|
237 |
def create_ui(agent):
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
{chunk}
|
241 |
"""
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
try:
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
history.append({"role": "assistant", "content": "No valid analysis generated."})
|
300 |
-
return history, "No valid analysis generated", "Analysis failed"
|
301 |
-
|
302 |
-
summary = "\n\n".join(responses)
|
303 |
-
history.append({"role": "assistant", "content": summary})
|
304 |
-
return history, "Analysis completed", "Success"
|
305 |
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
gc.collect()
|
313 |
-
|
314 |
-
send_btn.click(
|
315 |
-
analyze,
|
316 |
-
inputs=[msg_input, chatbot, file_upload],
|
317 |
-
outputs=[chatbot, final_summary, status]
|
318 |
-
)
|
319 |
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
)
|
325 |
|
|
|
|
|
326 |
return demo
|
327 |
|
328 |
-
|
329 |
if __name__ == "__main__":
|
330 |
try:
|
|
|
331 |
agent = init_agent()
|
332 |
demo = create_ui(agent)
|
333 |
-
demo.launch(
|
334 |
server_name="0.0.0.0",
|
335 |
server_port=7860,
|
|
|
|
|
336 |
share=False
|
337 |
)
|
338 |
-
|
339 |
-
|
340 |
-
|
|
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import pdfplumber
|
5 |
+
import json
|
6 |
import gradio as gr
|
7 |
+
from typing import List
|
8 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
9 |
import hashlib
|
10 |
import shutil
|
11 |
import re
|
12 |
+
import psutil
|
13 |
+
import subprocess
|
14 |
import logging
|
15 |
import torch
|
16 |
import gc
|
17 |
from diskcache import Cache
|
18 |
+
import time
|
|
|
|
|
19 |
|
20 |
# Configure logging
|
21 |
logging.basicConfig(level=logging.INFO)
|
22 |
logger = logging.getLogger(__name__)
|
23 |
|
24 |
+
# Persistent directory
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
persistent_dir = "/data/hf_cache"
|
26 |
os.makedirs(persistent_dir, exist_ok=True)
|
27 |
|
|
|
29 |
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
|
30 |
file_cache_dir = os.path.join(persistent_dir, "cache")
|
31 |
report_dir = os.path.join(persistent_dir, "reports")
|
32 |
+
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
|
33 |
+
|
34 |
+
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
|
35 |
+
os.makedirs(directory, exist_ok=True)
|
36 |
|
37 |
+
os.environ["HF_HOME"] = model_cache_dir
|
38 |
+
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
39 |
+
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
|
40 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
41 |
+
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
42 |
|
43 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
44 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
|
|
46 |
|
47 |
from txagent.txagent import TxAgent
|
48 |
|
49 |
+
# Initialize cache with 10GB limit
|
50 |
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)
|
51 |
|
|
|
|
|
|
|
|
|
52 |
def sanitize_utf8(text: str) -> str:
|
53 |
return text.encode("utf-8", "ignore").decode("utf-8")
|
54 |
|
55 |
def file_hash(path: str) -> str:
|
|
|
56 |
with open(path, "rb") as f:
|
57 |
+
return hashlib.md5(f.read()).hexdigest()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
def extract_all_pages(file_path: str, progress_callback=None) -> str:
|
60 |
try:
|
|
|
61 |
with pdfplumber.open(file_path) as pdf:
|
62 |
total_pages = len(pdf.pages)
|
63 |
if total_pages == 0:
|
64 |
+
return ""
|
65 |
+
|
66 |
+
batch_size = 10
|
67 |
+
batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
|
68 |
+
text_chunks = [""] * total_pages
|
69 |
+
processed_pages = 0
|
70 |
+
|
71 |
+
def extract_batch(start: int, end: int) -> List[tuple]:
|
72 |
+
results = []
|
73 |
+
with pdfplumber.open(file_path) as pdf:
|
74 |
+
for page in pdf.pages[start:end]:
|
75 |
+
page_num = start + pdf.pages.index(page)
|
76 |
+
page_text = page.extract_text() or ""
|
77 |
+
results.append((page_num, f"=== Page {page_num + 1} ===\n{page_text.strip()}"))
|
78 |
+
return results
|
79 |
+
|
80 |
+
with ThreadPoolExecutor(max_workers=6) as executor:
|
81 |
+
futures = [executor.submit(extract_batch, start, end) for start, end in batches]
|
82 |
+
for future in as_completed(futures):
|
83 |
+
for page_num, text in future.result():
|
84 |
+
text_chunks[page_num] = text
|
85 |
+
processed_pages += batch_size
|
86 |
+
if progress_callback:
|
87 |
+
progress_callback(min(processed_pages, total_pages), total_pages)
|
88 |
+
|
89 |
+
return "\n\n".join(filter(None, text_chunks))
|
90 |
except Exception as e:
|
91 |
+
logger.error("PDF processing error: %s", e)
|
92 |
+
return f"PDF processing error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str:
|
95 |
try:
|
96 |
+
file_h = file_hash(file_path)
|
97 |
+
cache_key = f"{file_h}_{file_type}"
|
98 |
+
if cache_key in cache:
|
99 |
+
return cache[cache_key]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
|
|
|
|
|
|
|
|
101 |
if file_type == "pdf":
|
102 |
+
text = extract_all_pages(file_path, progress_callback)
|
103 |
+
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
elif file_type == "csv":
|
105 |
+
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
|
106 |
+
skip_blank_lines=False, on_bad_lines="skip")
|
107 |
+
content = df.fillna("").astype(str).values.tolist()
|
108 |
+
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
109 |
+
elif file_type in ["xls", "xlsx"]:
|
110 |
+
try:
|
111 |
+
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
|
112 |
+
except Exception:
|
113 |
+
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
|
114 |
+
content = df.fillna("").astype(str).values.tolist()
|
115 |
+
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
|
116 |
+
else:
|
117 |
+
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
|
118 |
+
|
119 |
+
cache[cache_key] = result
|
120 |
+
return result
|
121 |
except Exception as e:
|
122 |
+
logger.error("Error processing %s: %s", os.path.basename(file_path), e)
|
123 |
+
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
|
124 |
+
|
125 |
+
def log_system_usage(tag=""):
|
126 |
+
try:
|
127 |
+
cpu = psutil.cpu_percent(interval=1)
|
128 |
+
mem = psutil.virtual_memory()
|
129 |
+
logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2))
|
130 |
+
result = subprocess.run(
|
131 |
+
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
|
132 |
+
capture_output=True, text=True
|
133 |
+
)
|
134 |
+
if result.returncode == 0:
|
135 |
+
used, total, util = result.stdout.strip().split(", ")
|
136 |
+
logger.info("[%s] GPU: %sMB / %sMB | Utilization: %s%%", tag, used, total, util)
|
137 |
+
except Exception as e:
|
138 |
+
logger.error("[%s] GPU/CPU monitor failed: %s", tag, e)
|
139 |
|
140 |
def clean_response(text: str) -> str:
|
141 |
+
text = sanitize_utf8(text)
|
142 |
+
text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
|
143 |
+
text = re.sub(r"\n{3,}", "\n\n", text)
|
144 |
+
text = re.sub(r"[^\n#\-\*\w\s\.\,\:\(\)]+", "", text)
|
145 |
+
|
146 |
+
sections = {}
|
147 |
+
current_section = None
|
148 |
+
lines = text.splitlines()
|
149 |
+
for line in lines:
|
150 |
+
line = line.strip()
|
151 |
+
if not line:
|
152 |
+
continue
|
153 |
+
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
|
154 |
+
if section_match:
|
155 |
+
current_section = section_match.group(1)
|
156 |
+
if current_section not in sections:
|
157 |
+
sections[current_section] = []
|
158 |
+
continue
|
159 |
+
finding_match = re.match(r"-\s*.+", line)
|
160 |
+
if finding_match and current_section and not re.match(r"-\s*No issues identified", line):
|
161 |
+
sections[current_section].append(line)
|
162 |
+
|
163 |
+
cleaned = []
|
164 |
+
for heading, findings in sections.items():
|
165 |
+
if findings:
|
166 |
+
cleaned.append(f"### {heading}\n" + "\n".join(findings))
|
167 |
+
|
168 |
+
text = "\n\n".join(cleaned).strip()
|
169 |
+
return text if text else ""
|
170 |
+
|
171 |
+
def summarize_findings(combined_response: str) -> str:
|
172 |
+
if not combined_response or all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
|
173 |
+
return "### Summary of Clinical Oversights\nNo critical oversights identified in the provided records."
|
174 |
+
|
175 |
+
sections = {}
|
176 |
+
lines = combined_response.splitlines()
|
177 |
+
current_section = None
|
178 |
+
for line in lines:
|
179 |
+
line = line.strip()
|
180 |
+
if not line:
|
181 |
+
continue
|
182 |
+
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
|
183 |
+
if section_match:
|
184 |
+
current_section = section_match.group(1)
|
185 |
+
if current_section not in sections:
|
186 |
+
sections[current_section] = []
|
187 |
+
continue
|
188 |
+
finding_match = re.match(r"-\s*(.+)", line)
|
189 |
+
if finding_match and current_section:
|
190 |
+
sections[current_section].append(finding_match.group(1))
|
191 |
+
|
192 |
+
summary_lines = []
|
193 |
+
for heading, findings in sections.items():
|
194 |
+
if findings:
|
195 |
+
summary = f"- **{heading}**: {'; '.join(findings[:2])}. Risks: {heading.lower()} may lead to adverse outcomes. Recommend: urgent review and specialist referral."
|
196 |
+
summary_lines.append(summary)
|
197 |
+
|
198 |
+
if not summary_lines:
|
199 |
+
return "### Summary of Clinical Oversights\nNo critical oversights identified."
|
200 |
+
|
201 |
+
return "### Summary of Clinical Oversights\n" + "\n".join(summary_lines)
|
202 |
+
|
203 |
def init_agent():
|
204 |
logger.info("Initializing model...")
|
205 |
+
log_system_usage("Before Load")
|
206 |
+
default_tool_path = os.path.abspath("data/new_tool.json")
|
207 |
+
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
208 |
+
if not os.path.exists(target_tool_path):
|
209 |
+
shutil.copy(default_tool_path, target_tool_path)
|
210 |
+
|
211 |
agent = TxAgent(
|
212 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
213 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
214 |
+
tool_files_dict={"new_tool": target_tool_path},
|
215 |
force_finish=True,
|
216 |
enable_checker=False,
|
217 |
step_rag_num=4,
|
218 |
seed=100,
|
219 |
+
additional_default_tools=[],
|
220 |
)
|
221 |
agent.init_model()
|
222 |
+
log_system_usage("After Load")
|
223 |
logger.info("Agent Ready")
|
224 |
return agent
|
225 |
|
226 |
def create_ui(agent):
|
227 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
228 |
+
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
|
229 |
+
chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages")
|
230 |
+
final_summary = gr.Markdown(label="Summary of Clinical Oversights")
|
231 |
+
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
|
232 |
+
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
|
233 |
+
send_btn = gr.Button("Analyze", variant="primary")
|
234 |
+
download_output = gr.File(label="Download Full Report")
|
235 |
+
progress_bar = gr.Progress()
|
236 |
+
|
237 |
+
prompt_template = """
|
238 |
+
Analyze the patient record excerpt for clinical oversights. Provide a concise, evidence-based summary in markdown with findings grouped under headings (e.g., 'Missed Diagnoses'). For each finding, include clinical context, risks, and recommendations. Output only markdown bullet points under headings. If no issues, state "No issues identified".
|
239 |
+
Patient Record Excerpt (Chunk {0} of {1}):
|
240 |
{chunk}
|
241 |
"""
|
242 |
|
243 |
+
def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
|
244 |
+
history.append({"role": "user", "content": message})
|
245 |
+
yield history, None, ""
|
246 |
+
|
247 |
+
extracted = ""
|
248 |
+
file_hash_value = ""
|
249 |
+
if files:
|
250 |
+
def update_extraction_progress(current, total):
|
251 |
+
progress(current / total, desc=f"Extracting text... Page {current}/{total}")
|
252 |
+
return history, None, ""
|
253 |
+
|
254 |
+
with ThreadPoolExecutor(max_workers=6) as executor:
|
255 |
+
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower(), update_extraction_progress) for f in files]
|
256 |
+
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
|
257 |
+
extracted = "\n".join(results)
|
258 |
+
file_hash_value = file_hash(files[0].name) if files else ""
|
259 |
+
|
260 |
+
history.append({"role": "assistant", "content": "✅ Text extraction complete."})
|
261 |
+
yield history, None, ""
|
262 |
+
|
263 |
+
chunk_size = 6000
|
264 |
+
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
|
265 |
+
combined_response = ""
|
266 |
+
batch_size = 2
|
267 |
+
|
268 |
try:
|
269 |
+
for batch_idx in range(0, len(chunks), batch_size):
|
270 |
+
batch_chunks = chunks[batch_idx:batch_idx + batch_size]
|
271 |
+
batch_prompts = [prompt_template.format(i + 1, len(chunks), chunk=chunk[:4000]) for i, chunk in enumerate(batch_chunks)]
|
272 |
+
batch_responses = []
|
273 |
+
|
274 |
+
progress((batch_idx + 1) / len(chunks), desc=f"Analyzing chunks {batch_idx + 1}-{min(batch_idx + batch_size, len(chunks))}/{len(chunks)}")
|
275 |
+
|
276 |
+
with ThreadPoolExecutor(max_workers=len(batch_chunks)) as executor:
|
277 |
+
futures = [executor.submit(agent.run_gradio_chat, prompt, [], 0.2, 512, 2048, False, []) for prompt in batch_prompts]
|
278 |
+
for future in as_completed(futures):
|
279 |
+
chunk_response = ""
|
280 |
+
for chunk_output in future.result():
|
281 |
+
if chunk_output is None:
|
282 |
+
continue
|
283 |
+
if isinstance(chunk_output, list):
|
284 |
+
for m in chunk_output:
|
285 |
+
if hasattr(m, 'content') and m.content:
|
286 |
+
cleaned = clean_response(m.content)
|
287 |
+
if cleaned and re.search(r"###\s*\w+", cleaned):
|
288 |
+
chunk_response += cleaned + "\n\n"
|
289 |
+
elif isinstance(chunk_output, str) and chunk_output.strip():
|
290 |
+
cleaned = clean_response(m.content)
|
291 |
+
if cleaned and re.search(r"###\s*\w+", cleaned):
|
292 |
+
chunk_response += cleaned + "\n\n"
|
293 |
+
batch_responses.append(chunk_response)
|
294 |
+
torch.cuda.empty_cache()
|
295 |
+
gc.collect()
|
296 |
+
|
297 |
+
for chunk_idx, chunk_response in enumerate(batch_responses, batch_idx + 1):
|
298 |
+
if chunk_response:
|
299 |
+
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
|
300 |
+
else:
|
301 |
+
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n"
|
302 |
+
history[-1] = {"role": "assistant", "content": combined_response.strip()}
|
303 |
+
yield history, None, ""
|
304 |
+
|
305 |
+
if combined_response.strip() and not all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")):
|
306 |
+
history[-1]["content"] = combined_response.strip()
|
307 |
+
else:
|
308 |
+
history.append({"role": "assistant", "content": "No oversights identified in the provided records."})
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
+
summary = summarize_findings(combined_response)
|
311 |
+
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
|
312 |
+
if report_path:
|
313 |
+
with open(report_path, "w", encoding="utf-8") as f:
|
314 |
+
f.write(combined_response + "\n\n" + summary)
|
315 |
+
yield history, report_path if report_path and os.path.exists(report_path) else None, summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
+
except Exception as e:
|
318 |
+
logger.error("Analysis error: %s", e)
|
319 |
+
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
|
320 |
+
yield history, None, f"### Summary of Clinical Oversights\nError occurred during analysis: {str(e)}"
|
|
|
321 |
|
322 |
+
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
|
323 |
+
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
|
324 |
return demo
|
325 |
|
|
|
326 |
if __name__ == "__main__":
|
327 |
try:
|
328 |
+
logger.info("Launching app...")
|
329 |
agent = init_agent()
|
330 |
demo = create_ui(agent)
|
331 |
+
demo.queue(api_open=False).launch(
|
332 |
server_name="0.0.0.0",
|
333 |
server_port=7860,
|
334 |
+
show_error=True,
|
335 |
+
allowed_paths=[report_dir],
|
336 |
share=False
|
337 |
)
|
338 |
+
finally:
|
339 |
+
if torch.distributed.is_initialized():
|
340 |
+
torch.distributed.destroy_process_group()
|