Spaces:
Runtime error
Runtime error
File size: 3,179 Bytes
14e57b0 f6b8b7e 9872917 dacf4f2 789e6b5 9872917 b85438c 789e6b5 66e43e3 13298a2 216a041 f466dd9 06a3d1b dacf4f2 9872917 9d2d2d3 9872917 789e6b5 9d2d2d3 c301a62 6449f8f f466dd9 b5ad13a 789e6b5 d26a101 789e6b5 9872917 e0ec116 b0bcf89 e0ec116 de2c9e2 789e6b5 9872917 b0bcf89 06a3d1b 02161de 06a3d1b 789e6b5 06a3d1b f45116f c7a48c9 dacf4f2 b0bcf89 6035350 f466dd9 dacf4f2 de2c9e2 dacf4f2 9872917 f466dd9 789e6b5 d05fa5e 1adc78a e0ec116 d05fa5e c7a48c9 dacf4f2 ef9b8ab f466dd9 c7a48c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
from generate_prompts import generate_prompt
import gradio as gr
import torch
from diffusers import AutoPipelineForText2Image
from io import BytesIO
import asyncio
# Load the model once outside of the function
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
async def generate_image(prompt):
try:
# Generate an image based on the prompt
output = await asyncio.to_thread(model, prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
print(f"Model output: {output}")
# Check if the model returned images
if isinstance(output.images, list) and len(output.images) > 0:
image = output.images[0]
buffered = BytesIO()
try:
image.save(buffered, format="JPEG")
image_bytes = buffered.getvalue()
# Verify the image bytes
print(f"Image bytes length: {len(image_bytes)}")
return image_bytes
except Exception as e:
print(f"Error saving image: {e}")
return None
else:
raise Exception("No images returned by the model.")
except Exception as e:
print(f"Error generating image: {e}")
return None
async def process_prompt(sentence_mapping, character_dict, selected_style):
images = {}
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}')
prompts = []
# Generate prompts for each paragraph
for paragraph_number, sentences in sentence_mapping.items():
combined_sentence = " ".join(sentences)
prompt = generate_prompt(combined_sentence, character_dict, selected_style)
prompts.append((paragraph_number, prompt))
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
# Create tasks for all prompts and run them concurrently
tasks = [generate_image(prompt) for _, prompt in prompts]
results = await asyncio.gather(*tasks)
# Map results back to paragraphs
for i, (paragraph_number, _) in enumerate(prompts):
if i < len(results):
images[paragraph_number] = results[i]
else:
print(f"Error: No result for paragraph {paragraph_number}")
return images
# Helper function to generate a prompt based on the input
def generate_prompt(combined_sentence, character_dict, selected_style):
characters = " ".join([" ".join(character) if isinstance(character, list) else character for character in character_dict.values()])
return f"Make an illustration in {selected_style} style from: {characters}. {combined_sentence}"
# Gradio interface with high concurrency limit
gradio_interface = gr.Interface(
fn=process_prompt,
inputs=[
gr.JSON(label="Sentence Mapping"),
gr.JSON(label="Character Dict"),
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
],
outputs="json",
concurrency_limit=20 # Set a high concurrency limit
).queue(default_concurrency_limit=20)
if __name__ == "__main__":
gradio_interface.launch() # No need for share=True for local testing
|