Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,9 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from diffusers import
|
| 4 |
from io import BytesIO
|
| 5 |
import asyncio
|
| 6 |
-
from generate_propmts import generate_prompt
|
| 7 |
-
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 8 |
|
| 9 |
# Load the model once outside of the function
|
| 10 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
|
@@ -12,7 +11,7 @@ model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
|
| 12 |
async def generate_image(prompt):
|
| 13 |
try:
|
| 14 |
# Generate an image based on the prompt
|
| 15 |
-
output = await asyncio.to_thread(model, prompt=prompt, num_inference_steps=
|
| 16 |
print(f"Model output: {output}")
|
| 17 |
|
| 18 |
# Check if the model returned images
|
|
@@ -49,10 +48,15 @@ async def process_prompt(sentence_mapping, character_dict, selected_style):
|
|
| 49 |
if i < len(results):
|
| 50 |
images[paragraph_number] = results[i]
|
| 51 |
else:
|
| 52 |
-
print(f"Error: No
|
| 53 |
|
| 54 |
return images
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
# Gradio interface with high concurrency limit
|
| 57 |
gradio_interface = gr.Interface(
|
| 58 |
fn=process_prompt,
|
|
@@ -62,8 +66,9 @@ gradio_interface = gr.Interface(
|
|
| 62 |
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
|
| 63 |
],
|
| 64 |
outputs="json",
|
| 65 |
-
|
| 66 |
)
|
| 67 |
|
| 68 |
if __name__ == "__main__":
|
| 69 |
gradio_interface.launch() # No need for share=True for local testing
|
|
|
|
|
|
| 1 |
+
from generate_propmts import generate_prompt
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
from diffusers import AutoPipelineForText2Image
|
| 5 |
from io import BytesIO
|
| 6 |
import asyncio
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Load the model once outside of the function
|
| 9 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
|
|
|
| 11 |
async def generate_image(prompt):
|
| 12 |
try:
|
| 13 |
# Generate an image based on the prompt
|
| 14 |
+
output = await asyncio.to_thread(model, prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
| 15 |
print(f"Model output: {output}")
|
| 16 |
|
| 17 |
# Check if the model returned images
|
|
|
|
| 48 |
if i < len(results):
|
| 49 |
images[paragraph_number] = results[i]
|
| 50 |
else:
|
| 51 |
+
print(f"Error: No result for paragraph {paragraph_number}")
|
| 52 |
|
| 53 |
return images
|
| 54 |
|
| 55 |
+
# Helper function to generate a prompt based on the input
|
| 56 |
+
def generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style):
|
| 57 |
+
characters = " ".join(character_dict.values())
|
| 58 |
+
return f"Make an illustration in {selected_style} style from: {characters}. {combined_sentence}"
|
| 59 |
+
|
| 60 |
# Gradio interface with high concurrency limit
|
| 61 |
gradio_interface = gr.Interface(
|
| 62 |
fn=process_prompt,
|
|
|
|
| 66 |
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
|
| 67 |
],
|
| 68 |
outputs="json",
|
| 69 |
+
concurrency_limit=20 # Set a high concurrency limit
|
| 70 |
)
|
| 71 |
|
| 72 |
if __name__ == "__main__":
|
| 73 |
gradio_interface.launch() # No need for share=True for local testing
|
| 74 |
+
|