Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,88 @@
|
|
1 |
import gradio as gr
|
2 |
from diffusers import AutoPipelineForText2Image
|
3 |
-
from
|
|
|
4 |
from PIL import Image
|
5 |
import asyncio
|
|
|
|
|
6 |
|
|
|
7 |
class SchedulerWrapper:
|
8 |
def __init__(self, scheduler):
|
9 |
self.scheduler = scheduler
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
@property
|
15 |
def timesteps(self):
|
16 |
return self.scheduler.timesteps
|
17 |
|
18 |
-
def set_timesteps(self,
|
19 |
-
self.scheduler.set_timesteps(
|
20 |
|
21 |
-
# Load the model and
|
22 |
-
tokenizer = AutoTokenizer.from_pretrained("stabilityai/sdxl-turbo")
|
23 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
24 |
|
25 |
-
|
26 |
-
scheduler = model.scheduler
|
27 |
wrapped_scheduler = SchedulerWrapper(scheduler)
|
28 |
model.scheduler = wrapped_scheduler
|
29 |
|
|
|
30 |
async def generate_image(prompt):
|
31 |
try:
|
32 |
-
num_inference_steps = 5
|
|
|
|
|
33 |
output = await asyncio.to_thread(
|
34 |
model,
|
35 |
prompt=prompt,
|
36 |
num_inference_steps=num_inference_steps,
|
37 |
-
guidance_scale=0.0,
|
38 |
-
output_type="pil"
|
39 |
)
|
|
|
|
|
40 |
if output.images:
|
41 |
return output.images[0]
|
42 |
else:
|
43 |
raise Exception("No images returned by the model.")
|
44 |
except Exception as e:
|
45 |
print(f"Error generating image: {e}")
|
46 |
-
|
|
|
47 |
|
|
|
48 |
async def inference(sentence_mapping, character_dict, selected_style):
|
49 |
images = []
|
|
|
50 |
prompts = []
|
|
|
|
|
51 |
for paragraph_number, sentences in sentence_mapping.items():
|
52 |
combined_sentence = " ".join(sentences)
|
53 |
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
|
54 |
prompts.append(prompt)
|
|
|
|
|
|
|
55 |
tasks = [generate_image(prompt) for prompt in prompts]
|
56 |
images = await asyncio.gather(*tasks)
|
|
|
|
|
57 |
images = [image for image in images if image is not None]
|
|
|
58 |
return images
|
59 |
|
|
|
60 |
gradio_interface = gr.Interface(
|
61 |
fn=inference,
|
62 |
inputs=[
|
@@ -67,5 +93,6 @@ gradio_interface = gr.Interface(
|
|
67 |
outputs=gr.Gallery(label="Generated Images")
|
68 |
)
|
69 |
|
|
|
70 |
if __name__ == "__main__":
|
71 |
gradio_interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from diffusers import AutoPipelineForText2Image
|
3 |
+
from diffusers.schedulers import DPMSolverMultistepScheduler
|
4 |
+
from generate_propmts import generate_prompt # Assuming you have this module
|
5 |
from PIL import Image
|
6 |
import asyncio
|
7 |
+
import threading
|
8 |
+
import traceback
|
9 |
|
10 |
+
# Define the SchedulerWrapper class
|
11 |
class SchedulerWrapper:
|
12 |
def __init__(self, scheduler):
|
13 |
self.scheduler = scheduler
|
14 |
+
self._step = threading.local()
|
15 |
+
self._step.step = 0
|
16 |
+
|
17 |
+
def step(self, *args, **kwargs):
|
18 |
+
try:
|
19 |
+
self._step.step += 1
|
20 |
+
return self.scheduler.step(*args, **kwargs)
|
21 |
+
except IndexError:
|
22 |
+
self._step.step = 0
|
23 |
+
return self.scheduler.step(*args, **kwargs)
|
24 |
+
|
25 |
@property
|
26 |
def timesteps(self):
|
27 |
return self.scheduler.timesteps
|
28 |
|
29 |
+
def set_timesteps(self, *args, **kwargs):
|
30 |
+
return self.scheduler.set_timesteps(*args, **kwargs)
|
31 |
|
32 |
+
# Load the model and wrap the scheduler
|
|
|
33 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
34 |
|
35 |
+
scheduler = DPMSolverMultistepScheduler.from_config(model.scheduler.config)
|
|
|
36 |
wrapped_scheduler = SchedulerWrapper(scheduler)
|
37 |
model.scheduler = wrapped_scheduler
|
38 |
|
39 |
+
# Define the image generation function
|
40 |
async def generate_image(prompt):
|
41 |
try:
|
42 |
+
num_inference_steps = 5 # Adjust this value as needed
|
43 |
+
|
44 |
+
# Use the model to generate an image
|
45 |
output = await asyncio.to_thread(
|
46 |
model,
|
47 |
prompt=prompt,
|
48 |
num_inference_steps=num_inference_steps,
|
49 |
+
guidance_scale=0.0, # Typical value for guidance scale in image generation
|
50 |
+
output_type="pil" # Directly get PIL Image objects
|
51 |
)
|
52 |
+
|
53 |
+
# Check for output validity and return
|
54 |
if output.images:
|
55 |
return output.images[0]
|
56 |
else:
|
57 |
raise Exception("No images returned by the model.")
|
58 |
except Exception as e:
|
59 |
print(f"Error generating image: {e}")
|
60 |
+
traceback.print_exc()
|
61 |
+
return None # Return None on error to handle it gracefully in the UI
|
62 |
|
63 |
+
# Define the inference function
|
64 |
async def inference(sentence_mapping, character_dict, selected_style):
|
65 |
images = []
|
66 |
+
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}')
|
67 |
prompts = []
|
68 |
+
|
69 |
+
# Generate prompts for each paragraph
|
70 |
for paragraph_number, sentences in sentence_mapping.items():
|
71 |
combined_sentence = " ".join(sentences)
|
72 |
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
|
73 |
prompts.append(prompt)
|
74 |
+
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
75 |
+
|
76 |
+
# Use asyncio.gather to run generate_image in parallel
|
77 |
tasks = [generate_image(prompt) for prompt in prompts]
|
78 |
images = await asyncio.gather(*tasks)
|
79 |
+
|
80 |
+
# Filter out None values
|
81 |
images = [image for image in images if image is not None]
|
82 |
+
|
83 |
return images
|
84 |
|
85 |
+
# Define the Gradio interface
|
86 |
gradio_interface = gr.Interface(
|
87 |
fn=inference,
|
88 |
inputs=[
|
|
|
93 |
outputs=gr.Gallery(label="Generated Images")
|
94 |
)
|
95 |
|
96 |
+
# Run the Gradio app
|
97 |
if __name__ == "__main__":
|
98 |
gradio_interface.launch()
|