Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from diffusers import AutoPipelineForText2Image
|
3 |
from io import BytesIO
|
4 |
from generate_propmts import generate_prompt
|
@@ -9,7 +10,7 @@ model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
|
9 |
|
10 |
async def generate_image(prompt):
|
11 |
try:
|
12 |
-
#
|
13 |
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
14 |
print(f"Model output: {output}")
|
15 |
|
@@ -22,7 +23,6 @@ async def generate_image(prompt):
|
|
22 |
return image_bytes
|
23 |
else:
|
24 |
raise Exception("No images returned by the model.")
|
25 |
-
|
26 |
except Exception as e:
|
27 |
print(f"Error generating image: {e}")
|
28 |
return None
|
@@ -39,14 +39,17 @@ async def process_prompt(sentence_mapping, character_dict, selected_style):
|
|
39 |
prompts.append((paragraph_number, prompt))
|
40 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
41 |
|
|
|
42 |
tasks = [generate_image(prompt) for _, prompt in prompts]
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
|
48 |
return images
|
49 |
|
|
|
50 |
gradio_interface = gr.Interface(
|
51 |
fn=process_prompt,
|
52 |
inputs=[
|
@@ -54,9 +57,9 @@ gradio_interface = gr.Interface(
|
|
54 |
gr.JSON(label="Character Dict"),
|
55 |
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
|
56 |
],
|
57 |
-
outputs="
|
58 |
-
concurrency_limit=
|
59 |
)
|
60 |
|
61 |
if __name__ == "__main__":
|
62 |
-
gradio_interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
from diffusers import AutoPipelineForText2Image
|
4 |
from io import BytesIO
|
5 |
from generate_propmts import generate_prompt
|
|
|
10 |
|
11 |
async def generate_image(prompt):
|
12 |
try:
|
13 |
+
# Generate an image based on the prompt
|
14 |
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
15 |
print(f"Model output: {output}")
|
16 |
|
|
|
23 |
return image_bytes
|
24 |
else:
|
25 |
raise Exception("No images returned by the model.")
|
|
|
26 |
except Exception as e:
|
27 |
print(f"Error generating image: {e}")
|
28 |
return None
|
|
|
39 |
prompts.append((paragraph_number, prompt))
|
40 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
41 |
|
42 |
+
# Create tasks for all prompts and run them concurrently
|
43 |
tasks = [generate_image(prompt) for _, prompt in prompts]
|
44 |
+
results = await asyncio.gather(*tasks)
|
45 |
|
46 |
+
# Map results back to paragraphs
|
47 |
+
for i, (paragraph_number, _) in enumerate(prompts):
|
48 |
+
images[paragraph_number] = results[i]
|
49 |
|
50 |
return images
|
51 |
|
52 |
+
# Gradio interface with high concurrency limit
|
53 |
gradio_interface = gr.Interface(
|
54 |
fn=process_prompt,
|
55 |
inputs=[
|
|
|
57 |
gr.JSON(label="Character Dict"),
|
58 |
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
|
59 |
],
|
60 |
+
outputs="text",
|
61 |
+
concurrency_limit=20 # Set a high concurrency limit
|
62 |
)
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
+
gradio_interface.launch(share=True) # Optionally make it public with share=True
|